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SUMMARY

The effect of the variation of meteorological parameters

on the estimates of sound intensity at distances from a few to

several tens of kilometers is discussed. The meteorological

parameters concerned are virtual temperature, wind components,

and the humidity (water vapor pressure specifically). Sound

intensity estimates are based on the results of a ray tracing

technique.

The variations of intensity estimates as determined by

Monte Carlo methods are discussed in Chapter II. It is found

that the variability is in the neighborhood of 5 decibels

regardless of whether the magnitude of atmospheric variability

corresponds to that expected over a fraction of an hour or to

a half a day. A significant factor is the determination of the

probability of returning sound rays at a given location; in

other words, whether the ray tracing method yields a sound

intensity estimate or none at all.

The basic characteristics of the variability of wind,

temperature, and vapor pressure are discussed in Chapter IIio

This information is required as an input for the calculations

reported in the previous chapter.

The effect of atmospheric variability on sound attenuation

is of a different character from that due to the effect on the

geometry of the propagative pattern and may be determined by

standard methods. The results of the analysis, in Chapter IV,

indicate that the variability of atmospheric humidity is the

most important factor. The small scale perturbations have little

effect, but the large scale perturbations that enter into

-ix-
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variations expected over a period of half a day may account

for intensity variability of several (near 5) decibels at I0 k_.

The appendices include several topics that are of importance

but which would interrupt the trend of the presentation if

included previously. Appendix A is devoted to a discussion of

the ray tracing technique. Several well known methods are

presented in some detail. The physical assumptions behind ray

tracing methods are discussed. It is found that the ray tracing

procedure as applied to the problem at hand (sound (noise) with

a broad spectrum and with appreciable intensity in the low

frequency bands) seriously violates these physical assumptions.

The situation may be eased somewhat (but not completely) by a

modification of the interpretation of the atmospheric measure-

ments. When the data points of a vertical sounding through the

atmosphere are Joined by straight lines, the description is

quite adequate for most purposes, but the presence of "corners"

is physically unacceptable for sound propagation estimates

using ray tracing. A method is proposed in which the sounding

is described by using parabolic arcs that join the data points

in as "smooth" a way as possible.

_ne mathematical problems involved in a theoretical

discussion of the variability of sound intensity estimates are

discussed in Appendix B.

Appendix C is a summary of several methods of constructing

sequences of random numbers with given second order properties

(standard deviations and internal correlations) from independent

random numbers.

-x-
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CHAPTER I

INTRODUCTION

A. THE PROBLEM

It is required to estimate the variations expected in

sound intensity level from an intense noise source located

on the ground at other points on the ground at distances

from a few to several tens of kilometers from the source

which are due to meteorological factors.

To quote L. M. Brekhovskikh(1)*(p. 446)_ " .... we shall

investigate the field from a concentrated source situated

in a layeredj inhomogeneous medium. This is one of the

foremost problems in modern radiophysics_ acoustics, and

the physics of the earth's crust." Needless to say, no pat

solution has been reached.

The basic technique that suggests itself is the ele-

mentary ray tracing method. The ray tracing technique has

been used to study various aspects of anomalous sound propa-

gation. The early estimates of the temperature structure

near the ozone layer were based on this method(2)(3). The

procedures for estimating the possibility of sound damage

from high energy explosions has also used these methods(4).

Raised numbers in parentheses indicate the corresponding

reference to be found just before the illustrations and

following the text.
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To delineate the problem a little more clearly, the

reasonably well-behaved aspects of sound propagation in the

atmosphere are excluded from consideration. In the first

instance, much work has been done on the effect of the atmos-

phere on the propagation of sound at ultrasonic frequencies.

In thls case, the frequencies are sufficiently hlgh that there

Is no questlon of using the limiting form or ray acoustic

approximations. The path lengths are relatively short; say,

of a few hundred meters down to the order of few meters.

The depth of the atmosphere involved is either negligible or

of the order of a few meters or tens of meters. As a conse-

quency, the atmospheric parameters may be considered as high-

ly simplified. Well-known relations may be used to estimate

the "average" vertical distribution of wlnd and sound speed.

The variation of these on still smaller scales then plays

the predominant role in the propagation problem.

On the larger scale, the major causes for refraction

earthward in the atmosphere lle at the ozone level (near 40

km In the vertical). The variation of parameters over

layers of the order of magnitude of a few kilometers becomes

relatively unimportant. The major anomalies of the sound

propagation may then be traced without paying particular

attention to details of the atmospheric parameters even

though the variations of these detail.s are easily measured --

In fact, regularly observed.

In both of the above "extreme cases," there Is usually

no question but that the methods of ray acoustics are appli-

cable wlth some degree of accuracy.

When the ray method is applied to the problem at hand,

this basic procedure for estimating sound intensity suffers

from two distinct disadvantages. First, It does not always

glve an estimate of the sound intensity. Second, its appli-

cation In several instances Is physically unsound.
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In those cases in which the ray method does not provide

a sound intensity estimate, it is possible to make some kind

of an estimate on the basis of the sound scattered and diffracted

into the region concerned.

Where the ray method does give answers, it is possible to

estimate the variations of sound intensity due to the variation

of atmospheric parameters, at least in part; but it is not

possible to determine what part of the observed variation of

intensity is due to the variation of these parameters and how

much was due to the fact that the ray method should not be

applied at all.

I

I
I

I
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B. THE RAY TRACE DESCRIPTION

The method of treatment in the following sections is based

on the following quantification of sound intensity estimation.

If the ray tracing method can be applied:

-_r

I = I.fe • f = Ir/Cdr/d_o )tan$o I

where

I = sound intensity estimate

!. = sound intensity from spherical spreading

f = focusing factor

a = attenuation coefficient

r = source-to-receiver distance

@0 = initial inclination of a sound ray

The total intensity is then a sum of intensities over all

the arriving rays

IT = zgl

where the symbolic summation includes "direct" rays arriving

at the receiver and all rays that might arrive at the receiver

after one or more reflections from the ground.

Several situations are included in the preceding summation.

In the first place, there may be two or more direct rays

arriving at the receiver. All of these are included. A partic-

ular example is the case of a "focus." This occurs at that

distance, r_, for which dr/d@ o = 0 so that f is definite.

(This case is not being discussed here since it requires

special treatment.) For a distance somewhat larger than r_,

there are two rays arriving at the receiver. The intensity

values associated with each are included in the summation.

In these situations, the undetermined factor, g, is taken as

unity.
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Another situation included in the summation is that which

occurs with a ground based "inversion" of the speed of sound

and wind component. The value of c + u increases with height

to a maximum and thereafter decreases. In such a situation,

there are rays which return to the ground associated with ray

inclinations @Q = 0 to @o = @max " The ray @max is that

associated with the maximum value (need be local maximum only)

of c + u. In such a case, the ray tracing procedure indicates

that no rays will return in some interval or, if an appropriate

approximation is used, will be associated with a very small

focusing factor. In this situation, sound reflected from the

ground from distances r/2, r/3, r/4, etc., may arrive at the

receiver after I, 2, 3, etc., reflections. These rays contri-

bute to the summation, and the undetermined factor, g, includes

the reflection coefficient for the ground, etc.

When the ray description fails to provide an estimate of

the sound intensity as described above, the situation is one

in which there is a decrease of the sum c + u from the ground

upward (to some level, at least). In this situation, the sound

ray corresponding to @o = 0 is bent upward and no direct

sound rays are received (in the ray tracing technique) out to

at least some distance away (or maybe not at all). The sound

reaching the ground in this instance is considered to come from

two sources, that diffracted into the region and that scattered

into it.
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Co COORDINATE SYSTEM

The coordinate system used throughout is a rlght-handed

rectangular system tangent to the earth. The (x,y)-plane is

considered as tangent to the earth with the sound source at

the origin. The z-axis is directed vertically and is considered

positive upwards. Since the propagation distance is less than

I00 km, there are no corrections made for the curvature of the

earth. Some departures from this system are made, but what is

intended is generally clear (we hope). Such variations usually

consist of a shift in origin that permits omission of an addi-

tive constant of no importance.

Since the sound propagation is nearly planar in radial

planes through the source, the (x,z)-plane is taken in the

direction of propagation. Reference to other directions requires

a rotation of coordinates. Wind components (u,v,w) are resolved

in the above system. Wind observations are, of course, made

with respect to north for the reference wind direction and must

be resolved into components in accordance with the particular

plane of sound propagation being considered.

!
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D. NOMENCLATURE AND TERMINOLOGY

The nomenclature and terminology used herein is strictly

that of standard good practice in both meteorology and mathe-

matlcs. This is particularly important in connection with

such terms as gradient, lapse rate, and inversion. By the

gradient, the signed derivative is always implied; such as

df/dz for a scalar function of one coordinate or the vector

whose components are Bf/Sx, 8f/By, 8f/Sz for a scalar function

of three coordinates. The term lapse rate is used in exactly

the sense the words would have in ordinary usage (and in

meteorological usage); i.e., the rate of "falling off" or of

lapse. Invariably this rate is taken in the vertical direc-

tion only. The expression is used only in reference to

temperature. The lapse rate (of temperature) is the negative

of the gradient of temperature in the vertical direction. Its

meteorological usage is easily Justified to get rid of the

incessantly present minus sign that would tag along wlth the

temperature g_aa_ (This _7_ _._i_._ seems to have

caused abundant confusion (5)(6)(7). An "inversion" usually

applies to the temperature structure in the vertical and in-

dicates a situation in which, instead of decreasing, the

temperature increases with height; a positive temperature

gradient, or a negative lapse rate. The term has been used

(perhaps badly) herein to indicate a condition in which c + u

increases with height up to a certain point (the "top" of the

"inversion").* An "increasing" temperature gradient is used

only to indicate a positive second derivative, d2f/dz 2 > O;

and the term "increasing" is never used to indicate the sign

of the gradient. When the temperature is increasing with al-

titude it is described as having a positive gradient (or

negative lapse rate), etc. (5)

Words that appear in quotation marks are being used in a

special sense and should be interpreted in the particular
context required.



I

l
l

I
I

I

l

I
I
l
I

l

I
l
I

I
I

I

-8-

E. OUTLINE OF TREATMENT

Empirical results on the variability of sound intensity

estimate by the ray tracing method are described in Chapter

II. The background material that was required for specification

of atmospheric variability is discussed in Chapter III. Chapter

IV contains an estimate of the variability of attenuation as

dependent on variability of atmospheric parameters. The con-

clusions presented in Chapter V repeat in abbreviated form

the results stated at some length in Chapters II and IV.

In order to deep the material of the chapters conveniently

abbreviated, there is a sequence of appendices followed by

the list of references. These contain the technical details

which, if included where the questions initially come up,

might confuse the trend of the treatment.
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CHAPTER II

VARIABILITY OF SOUND INTENSITY ESTIMATES

A. RAY TRACING DESCRIPTION

Practical estimation of sound intensity at a distance is

usually approached by the ray-traclng method. The application

of this method dates from the time of Lord Rayleigh with many

modifications by various authorst26_2}t ,,_ , depending on the

basic physical assumptions and assumptions regarding the

structure of the atmosphere. Although difference in the

ray-tracing equations lead to somewhat different results,

these differences are of relatively less importance than the

_e _ ....osphe_ is described and _^ basicway in which _ _ _^ _

inaccuracy of measurement or variability of the atmospheric

parameters that enter into these equations. The general

The ray-tracing equations used herein are:

x2 - xl = R(sin¢2 - sin¢l) (i)

tan¢i = cl sir_(ci cos_l + Ul )

tan¢2 = c2 sir_2/(c2 cos_2 + u2)
(2)
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cos_ = c_ cOS_o/[ co - (u_ -uo ) cOS$o]

cos_2 = c2 CO_o/[Co - (u2-Uo)cOSec]

R

co_

C

: [(c_-c_)cos_*+ (u_-u_)]/c*(z_-_)

(3)

: (co_i + co_2)/_ (4)

: (c,+c_)/2

where

x2-x_ = horizontal distance traveled in the layer from

z_ to z2

¢i,¢2 = ray tangent angles at levels z_, z2

_ _2 = phase normal angles at levels zl ,z2

%,c2 = speed of sound at levels z_,z2

u± ,u2 = horizontal wind speed components in the plane of

propagation at levels z_, z2

R = radius of curvature of the ray in the layer from

z_ to z2

The derivation of these (and other) ray-tracing equations

is discussed in Appendix A. The basic assumptions are that

the speed of sound and wind component change linearly throughout

layer and that the wind speed is small compared with the speed

of sound. The distinction between phase normal and ray tangent

is maintained through a relatively minor point. These relations

are subject to the basic objections that may be raised to any

ray tracing method, that they do not adequately satisfy the

basic physical assumptions. This point is rather important

i!_¸ ,
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and is discussed in Appendix A, also. The variability of

sound intensity estimates may be discussed reasonably without

laboring this point here.

The above equations give the horizontal distance traversed

as the ray passes through the layer from z to z2. For an

atmosphere consisting of several such layers, the distances

are added. If the ray returns to earch, the value of

(and @) must become zero in some layer. The total horizontal

distance traversed will be twice the distance traversed to

reach the level where

n

r=2_

i=O

(5)

where r is the total horizontal distance traveled by the ray,

and the ray reaches its maximum altitude between the levels

z_ and _+i.

The atmospheric parameters enter into the problem

directly as _,u2 (wind components along the plane of the

ray) and indirectly through cI and c2, c = 20.0468_73.15 + T

where T is the virtual air temperature in degrees centigrade.

The intensity of the sound is obtained from the relation

I = I.fe -ar (6)

where I. is the sound intensity due to spherical spreading

and f is the focusing factor given by

f--Ir/(_r/_o)tan$oI (7)

in which _o is the initial inclination angle of the ray. The

factor e -ar accounts for atmospheric attenuation of various

kinds. For the present purposes, this factor is neglected,

and the value of 0 is assigned to a .
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If more than one sound ray arrives at a point, the total

sound intensity is obtained by addling the individual ray

contributions

I I-_ = _ gl 11

i

l
I
I

I
I
I

I

I

I
I

I
i

i

(8)

where II is the intensity due to each "ray" and gl is a

function of how the sound ray arrives. For direct air trans-

mission, g_ = I. (Sound ducted along the ground would require

that g_ include the ground attenuation, the number of ground

reflections, etc.)
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SPECIFICATION OF THE PROBLEM
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The problem of estimating the variability of sound involves

working backwards through the equations of the proceeding

section. The total intensity from (8) is dependent upon the

focusing factor (7) for the rays that return to the point

concerned. This factor (and whether any rays return at all

at this point) is determined from the summation (5) of the

quantities from (1) through (4).

A variational or perturbation treatment presents

difficulties. These are described in Appendix B. The

present analysis is confined to an empirical approach using

equations (1) through (8). There are severe restrictions

in this method, but the reliability of sound intensity

variability estimates seems reasonably significant. The

principal restriction lles in the basic assumption of hori-

zontal homogeniety in the atmosphere. To relieve this

restriction, the computation difficulties are increased many

fold. In addition, the basic information on variability of

the wind and temperature that would be required is not

available.

The specification of the problem also involves specifica-

tion of the variability of the atmospheric wind and temperature.

Since this is reasonably important, the subject is discussed

in some detail in Chapter III as it applies to this problem.

Three levels of variability are considered for practical

purposes.

First, small variability that would correspond to the

changes to be expected over an interval of a fraction of an

hour. This would correspond to estimating sound intensity

from atmospheric measurements with a time lag that would allow

only for completion of the intensity computations.

Second, moderate variability that would correspond to

changes expected over a period of four to slx hours. This

would roughly correBpond to a reasonable minimum planning
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time for test operations.

Third, a variability that would correspond to a time

lag of eight to twelve hours.

(See Chapter III for more explicit specification in the

last two cases.)
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C. RESULTS ON VARIABILITY OF INTENSITY DUE TO DIRECT RAYS

I. Empirical Approach

The empirical approach used to obtain estimates of sound

intensity variability was to compute the sound intensity for

direct rays returning to the ground at various distances from

a hypothetical source given a specific initial atmospheric

sounding. The sounding was then perturbed by a specific

amount to correspond to what might be expected at a later

time. Such perturbations to the sounding were repeated lO0

times, and the results were compiled in tabular form including

the mean sound intensity level, the standard deviation of the

intensity level, and the number of cases in which no direct

rays returned at the point concerned°

Since the perturbations of the sounding were to correspond

to realistic changes that might be expected in the atmosphere,

care was taken to assure the proper interlevel correlation of

the perturbations. For short time lags, the general character

of the sounding _ __em_no unchanged, but small changes occur in

temperature and wind with a correlation distance of only a

few hundred meters. For longer time lags, changes have a

correlative distance of seven kilometers. ±_ne proper

perturbations were applied by starting with a set of indepen-

dent random numbers (a mean zero, variance one), and then

forming a set of acceptability intercorrelated random numbers

with the proper standard deviations by means of a linear

transformation of the initial set. (See Appendix C for

details.)

2. Results

I

a) Illustrative Cases

Figures i through 7 illustrate several case of the

variability of sound intensity estimates (direct rays) due to

the variability of atmospheric wind and temperature. Each

of these figures is divided into four parts: a, b, c and d.

For each figure, the parts illustrate the following information:
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Part _ - Graphical representation of c + u as a

function of altitude. (c = speed of sound, u = wind com-

ponent in the plane of propagation, both meters/second.)

Altitude is plotted vertically in meters.

I

I

Part _ - The percent of occasions when no ray returned

directly at the distance shown by the abscissa (kilometers).

Curves along the bottom indicate a ray returned to the ground

in nearly all cases, near the top in almost none of the cases.

I
I

I
i
I

I
I

I

Part _ - The standard deviation of the sound intensity

level (in decibels) for those occasions when a ray returned

at the distance shown by the abscissa (kilometers).

Part d - The average sound pressure level (decibels)

for those occasions when a ray returned at the distance shown

by the abscissa (kilometers). The sound pressure level

indicated is t_at for the rays that return directly to the

point indicated. No correction is made for attenuation. No

correction is made for return of sound after one or more

reflections from the ground between the sound source and the

distance indicated.

In parts _, _ and _, there are three curves shown

corresponding to different levels of atmospheric variability:

Solid with dots: corresponds to variability

expected over a very short time

(materially less than an hour).

I

I
I

I
I

Dashed:

Solid:

corresponds to one-fourth the natural

variability or to a time lapse of

approximately four to six hours between

sounding and sound transmission.

corresponds to one-half the natural

seasonal variability or to a time lapse

of eight to twelve hours between the

meteorological sounding and the sound

transmission.
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i) Case I, Figures la, ib, lc and ld

The variation of c + u with height shown in

Figure la indicates a rapid increase of c + u with height

from the ground to near i000 m with irregular variations of

c + u above characterized by a very weak trend to larger

values at higher elevations.

The fraction of rays returned to the ground at distances

to near 12 km is nearly 100%. At distances from 15 to 20 km,

few rays are returned due to the fact that the parameter c + u

(Figure la) shows a well defined local maximum near I000 m. At

larger distances, the proportion of returning rays increase

steadily due to the increasing trend of c + u with altitude

at higher altitudes.

The standard deviation of intensity in the range from

13 to 30 km (Figure Ic) is unusually large in all cases

(lO to 20 db) with wide variation between the three levels

of atmospheric variability. This reflects primarily the fact

that there were relatively few cases of returning rays.

ii) Case II, Figures 2a, 2b, 2c and 2d

Reference to Figure 2a indicates the presence

of a reasonably strong "inversion" with the maximum of c + u

at 900 meters, but with a secondary small "inversion" at the

ground. In the neighborhood of 4000 meters and above, the

values of c + u exceed these at lower levels and are increas-

ing with altitude.

The trend of the three curves in Figure 2b clearly indicate:

(I) the effect of the small inversion near the ground by the

presence of a high percentage of returning rays in the range

from 0 to 4 km, (2) the effect of the peak of c + u at 900 m

in returning rays in the range from 9 to 14 km, and (3) the

effect of the upper increase in c + u at high levels in

the returning rays at distances beyond 30 km.

I
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iii) Case I!I, Figures 3a, 3b, 3c and 3d

Figure 3a indicates a steady decrease of

c ÷ u from the ground to near lO00 m followed by a reasonably

rapid increase to near 1800 m and by a slow increase from

that level upward.

The fraction cases with rays not returning as a function

of distance (Figure 3b) is large to near 21 km due to the

marked decrease of c + u near the ground. In the case of

smallest variability, only one case occurred with rays returning

at distances of less than 21 km. The number of cases of

returning rays in this interval increases with increasing

basic variability magnitude. The local weak maximum of c + u

near 2000 m brings rays to the ground between 25 and 30 km in

a majority of cases, the most for the small variability

situations. Since the maximum near 2000 m is only slightly

above c + u at the ground and since c + u increases

weakly above the 2000 m level, the proportion of cases of

returning rays beyond 30 km is only near 60%.

The large peak in the standard deviation of the sound

....... _ _ 2_ _ Figure 20_ reflects the small data

sample in the case of weak basic variability.

iv) Case IV, Figures 4a, 4b, 4c and 4d

The characteristics of c + u in Figure 4a

indicate elevated refraction with rays reaching their maximum

above I000 m. Since c + u decreases steadily immediately

above the ground, rays return to earth at some distance from

the sound source.

The fraction of rays not returning earthward (Figure 4b)

is nearly 100% up to near 13 km. Beyond 23 km, nearly all

cases indicate rays returned to earth (the effect of the

strong increase of c + u at upper levels in Figure 4a).

In the zone from 16 to 18 km, a large majority of cases

showed ray returns.
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The disconnectedness of the dashed curve and the

termination of the dot curve in Figures 4c and 4d reflects

the fact that none or only a few cases of returning rays

occurred at distances less than 15 km.

v) Case V, Figures 5a, 5b, 5c and 5d

The values of c + u decrease irregularly to

near !000 m (Figure 5a) and increase from that level upward,

the increase above 2500 m becoming rapid. The situation is

similar to Case IV.

Returning rays are generally absent at distances less

than 21 km (Figure 4b), some cases occurring for the intermediate

and larger variability levels, but none for the small variability

level. At distances from 23 to 30 km, there are returning rays

in all cases. Beyond 30 km, the fraction of returning rays

decreases with increasing distance.

The absence of returning rays is reflected in Figures 4c

and 4d by the fact that the dot curve for the smallest

variability situation is not shown in the range from zero to

21 km.

vi) Case VI, Figures 6a, 6b, 6c and 6d

The values of c + u increase irregularly from

the surface to 2500 m (Figure 6a) and decrease above that

level. The overall rate of change of c + u with height

throughout is very small, but insome levels, the rate of change

is reasonably large.

The fraction of cases in which rays returned at given

distances is near 100% beyond 17 km for the cases of small and

moderate atmospheric variability, but near 80% for large atmos-

pheric variability.

vii) Case VII, Figures 7a, 7b, 7c and 7d

The values of c + u (Figure 7a) increase

from the ground to near 3000 m with a secondary local maximum

i i
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near 1500 m. Above 3000 m, the value of c + u decreases

steadily. The situation is similar to Case VI, (Figure 6a).

The feature that might distinguish the two cases is the fact

that, while in Case VI there were several minor fluctuations

in c + u with height, in Case VII the prominent secondary

maximum near 1500 m is the only feature that distributes a

reasonably smooth trend of c + u with height. The total

magnitude of the range of c + u is reasonably small.

The fraction of the time that rays returned to the ground

at given distances never reaches 100% (Figure 7b), but in all

cases, it is largest near 24 km, presumably due to refraction

below the secondary maximum of c + u near 1500 m.

b) Conclusions

The seven illustrative cases discussed above (Figures

1 through 7) cover a wide range of atmospheric conditions for

which direct rays are returned earthward. The range of

variability assigned to the atmospheric parameters samples

their variability over a span of from a fraction of an hour

to in the neighborhood of half a day.

There are several features of the variability of sound

intensity estimates that characterize all of these illustrations.

The first of these is the division of the intensity estimate

problem into two distinct parts:

i) Whether or not there will be any rays returning

directly to a given distance, and

ll) When there are rays returning directly at the

given distance from the source, what will be the

variability of the sound intensity?

In the first instance, under conditions where c + u

aloft is of the order of lO to 20 m/sec layer than the values

near the ground, there are zones where rays return to given

distances in nearly all cases. On the other hand, in these

i li
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and the other cases for any fixed distance, there are some

instances of direct rays returning earthward. Consequently,

the presence of directly returning rays at a given point is

essentially a probability problem. The probability being

large at some distances, small at others (and seldom zero in

the cases shown).

There seems to be no consistent systematic connection

between the size of the atmospheric variability imposed on

wind and temperature and either the likelihood of direct rays

returning at a given distance or the standard deviation of

sound intensity when rays are returned.

The standard deviation of intensity generally lies in

the neighborhood of 5 db. in a general way, it appears that

if the likelihood of returning rays is not large, the standard

deviation of intensity of what rays are returned may be some-

what larger than otherwise. The occurrence (number of cases)

of the standard deviation of sound intensity estimates

(direct returning rays, decibels) by class intervals against

the fraction (percent) of cases in which direct rays failed

to return at given d_o_ is ...._ mn _a_ie I. Distances

ranged from 5 to 50 k_ When rays return in nearly all

cases (0-i0), the largest number of cases show a standard

deviation of intensity estimate in the 2.5-5.0 db range.

As the fraction of cases where rays fall to return increases,

the largest number of cases moves into the 5.0-7.5 db range.

It is tempting to form a regression of "sigma" on the

fraction of cases, but the scatter of the cases and irregularily

of details of their distribution clearly indicates that it

would be of little or no significance (with the possible

exception of the case of the smallest variability level).

The distribution of cases in the column of "totals"

indicates that the maximum for the standard deviation of sound

intensity estimate (direct returning rays) moves from the 2.5-

5.0 db range at the largest variability level. This is what

I l l
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TABLE I

Occurrence of Standard Deviation of Sound Intensity Estimates (Decibels)

as a Function of the Fraction of Cases in which Direct Rays Failed to

Return to Given Distances (Percent). Distances Range from 5 to 50 km.

Standard % Cases Direct Rays Failed To Return

Deviation 0-20 20-40 40-60 60-80 80-98 Total

Smallest Variability Level

O. 0-2.5 51 5 2 2 60

2.5-5.0 68 14 2 1 85

5.0-7.5 31 21 21 7 5 85

7.5-I0.0 I 3 13 5 II 33

10.0-12.5 3 # 1 3 II
12.5-15.0 i 13 14

15.0-17.5 1 I

Total 152 46 40 16 35 289

Moderate Variability Level

oo.o-2.5 36 3 4 3 18 64

_55o 7_ n _ _ 2_ _95.0-7.5 17 20 2 I 2 81

7.5-10.0 1 6 5 8 2 22

10.0-12.5 2 _ 3 9

12.5-15.0 I I

15.0-17.5 I 1

17.5-20. 0 8 8
20.0 6 6

Total 126 42 48 32 63 311

Largest Variability Level

0.0-2.5 4 I 4 I I ll

2.5-5.0 53 6 6 l0 6 81

5.0-7.5 44 55 43 18 22 182

7.5-10. o 9 12 4 II 36

I0.0-12.5 2 lO 12

Total I01 71 67 43 4O 322

I
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one would expect. This shift Is weakly indicated and the

dispersion is large in all cases.

With regard to the number of cases in which rays fail to

return at a given distance (raw totals for each variability

case), the high percentage of returning rays (0-20 column)

decreases steadily with increasing degree of atmospheric

variability, _-__u_ only from __ou_ half to one-third of the

total number of cases. This is expected. The large number

of cases in each of the other row categories clearly indicates

that a moderate probability of returning ray at any given

distance.
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CHAPTER III

VARIABILITY OF METEOROLOGICAL PARAMETERS

Several aspects of the basic variability of meteorological

parameters with application to the problem of the variability

of sound intensity are discussed in this chapter. The sound

intensity estimates from ray tracing methods depend on the

parameters c and u, c = speed of sound, u = wind speed in

the plane of propagation. The speed of sound is dependent on

several meteorological parameters, the most important of which

is the temperature. These are discussed in the first section

below. Since the azimuth of the sound propagation plane may be

selected at will, the wind component, u, is determined from

both _EW and uNS , the two orthogonal components of the wind

vector.

The range of interest in the variability of the meteorolog-

ical parameters extends from the climatological variability to

the mlcrometeorological scale of a few minutes and a few miles

in distance. It covers the entire range of the ray paths,

which includes the region from the surface to above 20,000

feet (5 km).

In addition to variability in the strict sense, it is also

necessary to have a rather clear idea of the errors of measurement
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of the atmospheric parameters together with the accuracy with

which a method of describing atmospheric conditions actually

represents the atmosphere.

A basic problem that is involved in ray tracing estimates

is the space variation of atmospheric parameters over the ray

path. It is supposed that the measurements made (near the

source, say) actually represent conditions without error. The

path may extend over a distance of many kilometers so that on

the downward leg conditions may be different from those on the

upward leg.

Measurements by radiosonde techniques are those of the

parameter values along the path of the balloon, which may go in

a direction quite different from that of the ray concerned.

Consequently, the distance induced errors may be largest at

the top of the ray path where errors are most critical.

There is always a time lag in a practical situation to

permit the accumulation of data, computation of sound intensity

estimates, and last minute decisions as required.
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A. GENERAL CONSIDERATIONS

I. The Dependence of the Speed of Sound on Atmospheric Parameters

The speed of sound is related to the temperature of the air

and its moisture content through the relation

o = (y_T*)½ _ 331.6(T*/273)½

¥ = ratio of specific heats

R_ = gas constant for (dry) air

T* = the virtual temperature (°K)

The virtual temperature is introduced to make possible the use

of the gas constant for dry air instead of using a gas constant

for moist air, a variable quantity depending on the amount of

moisture. Thus,

T* = T(R./P_ )

where T = absolute temperature,

air, or

R, = gas constant for moist

T* = T/(I - 3e/8p)

(3/8 = i - 5/8 _ 1-0.6221 = 0.3779 where 0.6221 is the specific

gravity of water vapor as compared with that of dry air at the

same temperature and pressure (7a)) where

e = partial pressure of the water vapor

p = total pressure of the damp air

The partial pressure of the water vapor is related to the

relative humidity and the temperature

I
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e = He_ (T)

where H is the relative humidity and e. (T) is the saturation

pressure of the water vapor at the temperature of the air.

Variations in the speed of sound are related to variations

in both temperature and relative humidity, thus

25c/c = (sT/T)[1 + T*H(3es/8p)(de,/esdT)] +(T*/T)(3e,/8p)(6H).

Using nominal values, this is approximately

26c/c _ (6T/T)(I + 0.074H) + 0.0038(6H).

The change of relative humidity from 1.0 to 0.0 would bring

about a change of the speed of sound equivalent to a i° change

of temperature. The effect of temperature change reflects a

small correction due to the fact that saturation pressure increases

with temperature, 7.4_ at H = I (i00_ relative humidity).

In terms of vapor pressure changes

25c/c = 8T/T + (T*IT)(35e/Sp).

Since T*/T _ I and if p _ iO00 mb, then for 8e -- I0 mb,

(an extremely large change) the last term amounts to 0.003 or

that due to about I° C change in temperature.

2. Variability of Meteorological Parameters

The variability of meteorological parameters involves several

considerations and may be made a complex subject. Some of the

basic considerations are discussed in this section to clearly

define the limitations and restrictions of the analysis that

follows.

The variability of a meteorological parameter is loosely

described as a measure of how and how much a parameter varies

m
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as a function of time difference, coordinate difference, level

difference, etc. On the basis of these ideas, a fundamental

characteristic of the problem is two values of a parameter, say

U , at two points I and 2, the individual point values being

denoted by UI and U_. (We exclude the case where UI and

U_ may be different parameters as being outside our present

area of applications.) The points I and 2 may differ in time

or space coordinates or both. The problem then consists of the

following -- If the value U_ is known, what may be said

about the probability distribution of U_ when the coordinate

values are specified?

It is readily seen that such a problem may be greatly

extended and generalized. To keep the situation reasonably

simple, we consider only the mean values and second moment

parameters (standard deviations and correlation coefficients or

variances and covariances). These quantities carry with

themselves an implication that the probability density functions

concerned are Gaussian (normal). This is by no means the case,

but not enough is known about their non-Gaussian character to

be intelligently applied to the situation at hand.

One more complicated situation will be considered. If

is replaced by the ensemble of meteorological information of

the past, how well does a "forecast" of U2, say U_ , differ

from U2 itself?

In the following sections, some aspects of the variability

of meteorological parameters in general are discussed. It is

pointed out that two different quantities are required for the

description of atmospheric variability in the simplest terms,

the variances or standard deviations of the parameters at a

specific level and the covariances or correlation coefficients

of the parameter between levels.

a. Variation in Time or Distance

The variation of a wind component or temperature
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difference with time or distance or both may be expressed as a

mean square difference:

a 2 = (U2-Uz)2 = --2u2 - 2(_) + _2 = 2u2 (i - r)

and where u_ = _ - U and u2 = U2 - U are departures from

the mean U, and where the values of time (or distance) 1 and

2 are indicated by subscripts. If it is assumed that

"_y = _" = u-= = o_

(i.e., the standard deviations are time or distance invariant),

the last expression follows where r is the correlation

coefficient. The correlation coefficient is a function of time

(or distance) and has a definite functional form depending on

the difference AT = ta - _ *. Consequently,

a2/a_ = 2(1 - r(At) ).

The correlation coefficient function may be written in the

form (7b)

r(At) = 1- Alatl a + latla_(at)

where A is a constant, a is a parameter such that 0 < a g 2

and _(At) is a function that converges uniformly to zero in

At. Then

_= = 2_ [A + _(At)] Intl _ .

@ These specifications amount to considering U(t) as a

stationary homogeneous process. This Is not exactly the

case in the atmosphere.
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If the last term in the above is neglected, then

_- _e _ IAtl_/2 "

The preceding form for the correlation coefficient is theoretical

in that it is assumed that there are no basic errors of observa-

tion. A more realistic form is

= kr(At )rreal

where 0 < k < I and k is a measure of the observational

errors as compared with the natural variability of the parameter

concerned. In this case, the variance of the difference is

expressed as

(_2 = 2a_ [(1 - k) + _IAtl = + --- ] .

For reasonably accurate measurements, k is nearly I so that

the first term in brackets is small (which in part explains why

it is overlooked).

The values of a depends on the nature of the process

that gives rise to variation of the parameter, u. It may be

shown that if the process is differentiable in time, then,

= 2. If the value of _ is less than 2, considerable care

should be taken to inspect the physical processes involved.

For example, for a = I the process may be one that is piece-wise

constant with random jumps. The standard textbook example is

that of a process that alternates at random between two arbitrary

values.

b. Scales and Errors

The nature of the measurement conditions occasionally

limits meteorological measuring technique so that the error of
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measurement cannot be ignored. In addition, the atmosphere is

never in a steady state (constant parameters) so that detailed

measurements are not repeatable. The size of the disturbances

that bring about this constantly varying condition ranges in

horizontal size from an appreciable fraction of the circumference

of the earth to a few millimeters. The description of such a

range of scale is properly done by spectrum analysis. The

application of such a treatment to the problem at hand is

awkward. In the interest of simplicity of treatment, the scale

representation is thought of as dichotomous. Consequently, an

atmospheric parameter is considered to consist of three additive

parts

u = ua +u_ +uo

where _ = large scale part, _ = small scale part, _ =

error. The first will be considered to have a non-zero mean

value _ = _ and the other two will be thought of as having

zero means. Then

U = U + u_ + u_ + uc

where the lower case letters represent departures from the mean.

If the mean square difference is formed in this instance, then

a_= (u_-_)_= [(u_-u2)+ (u_-u_)+ (u_-u_)]_

= [(u_-u_)+ (_ _-_ ) +_u,_ -u_ ) + (_ -_ _ )]

so that
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The cross products with U2 - _i drop because (u_ -_l ) = O,

etc., and the cross products of lower case terms drop because

it is assumed that the values in each category are independent

of those in any other category.

This description of the variability of U leaves much to

be desired, but accounts for more than is really known about

atmospheric variability excluding a few highly specialized

studies.

One particular weakness is the treatment of the error

term. Such an error description actually describes only a

small fraction of the error situation. For example, errors

that result in a bias are not accounted for. This type of

error is reasonably common in some meteorological data,

particularly observations from atmospheric soundings to high

altitudes. Fortunately, we are interested in only the lower

3 to 5 km of the atmosphere where such a bias is small or

negligible.

c. Covariances and Correlation Coefficients

The basic correlation coefficient, r, of section a,

is defined from the relation

G_ e_ ro = (UI -_ ) (Us -Uz )

o_ : (u_-_)_

where the bar over the symbols indicates an appropriate mean

value (expectation).

The subdivision of U of the previous paragraph leads to
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Cl 2 Oa 2 __ Ob 2 __ Cc 2= , U2 2 = Ca 2 _i_ Cb 2 __ Cc 2
1 1 1 2 2 2

and to

= + ub u_ + u_ u_% c 2ro u_ 1 u_ 2 1 2 1

The final term

u_
1 2

is set equal to zero on the basis of the assumption that the

errors in measuring U at points I and 2 are independent.

Now let

1 1 2

Cb C b -_ U bi 2rb ub I 2

define the correlation coefficient for the large scale part,

r_ , and the small scale part, rb . Then

Cl c2ro = Oa Ga ÷ C_ G b
1 2 ra I 2 rb

so that

ro = (c_ /o4)(0_2/0_)r_ + (c_ /C_)(ab2/ob)rb •
1 I

Each of the ratios (in parentheses on the right-hand side)

has a form like
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1 1 1 1 1

which is numerically less than I.

made without error, oo = or = O,

tion coefficient would be indicated by the symbol

d. Reconstruction of a Sounding

Let U_ represent a sequence of values of U as observed

from a meteorological sounding. The serial values of i = I,

2, ---, indicate the levels at which the parameter U is observed,

Z_. It is required to construct a hypothetical sounding, U_*,

that is similar to the given sounding but which differs from it

in a way that allows for the basic variability of the atmosphere.

If the observations had been

the corresponding corre!a-

r..

Let

U f = U_ + u_

where u s is an increment added to U_ to give a new value U*.

The mean square value of this increment is

q

U -U_ m = u_ = o_ .

If the variation from U i is assumed to be described by a

Gaussian (or normal) distribution, the the addition of a random

number at each level, i, with zero mean and standard deviation

a_ would be satisfactory. On the other hand, the numbers to be

added at the different levels are not independent. In other words,

the random increments, u_, at the various levels must be

correlated with each other in a way that describes the variability

of the atmosphere. In other words, if i and j are two levels,

then

usu, = c_c_r_j

I
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where r_ is the coefficient of correlation between u_ and

uj . The problem is then to construct a sequence of values

u_ in such a way that each has a standard deviation a_ but

so that they are interrelated with a given correlation matrix

r_ _ .

There are two common methods to construct sequences of

numbers with the required properties from a sequence of

independent random numbers with zero mean and unit variance;

by

i) moving averages

ii) by linear equations

The method of moving averages is fo_r_nalized by the

statement

k

= E aj xj +I

j=l

where xk+ _ are members of a sequence of k + N random numbers,

(N = number of levels required, i = I, ---, N). The values of

k and of a_, ---, ak are to be determined in such a way that

u s and u_ are correlated in the specified manner. This

method has the advantage of simplicity in application but the

problem of finding the aj's for a given correlation coefficient

matrix, r_j, is not easily solved in general. (Appendix C)

The linear equations method consists of expressing the

values of u_/a_ in the form

where the x_'s

N

= E a_ _x_

J=l

are N independent random numbers with zero

I llfll inn
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mean unit variance. The coefficients, a s_, are to be

determined in such a way that us, u s are properly correlated.

Methods for determining the coefficients, a sj, are discussed

in Appendix C.

Matching levels of the sounding with those for which the

correlation coefficient matrix are known must be made for

practical applications. This is handled in a resonable manner

by forming the sequence u_ for the levels corresponding to

the correlation coefficient matrix and then interpolating

for the levels indicated in the sounding. In terms of correla-

tion coefficients at the sounding levels, this procedure is

equivalent to using correlation coefficients interpolated from

the correlation coefficient matrix.
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B. CLIMATOLOGICAL VARIABILITY, WIND AND TEMPERATURE

The climatological variability of an atmospheric parameter,

U, consists of a measure of its standard deviation at a point

together with the two point correlation coefficients (or

covariances) relating the quantity at points I and 2, where

I and 2 may differ in time, altitude, geographical coordinate,

or any combination thereof as required. The details of the

second group of parameters is generally very restricted for

the atmosphere. The adjective "climatological" refers generally

to the mean value with respect to which the quantities concerned

are computed. The usual usage (adopted herein) is that the

appropriate mean is based on a substantial period of record

(several years).

,I

I

I

I

I

I

I

I
I

I

The meteorological parameters do not have constant means

so that the meaning of the terms is further restricted to

eliminate or to adequately account for such items as the annual

and diurnal changes that occur. The parameter mean is not only

a function of level and location, but also a function of time

(of day and hour)° (Long term trends are neglected.)

i. Standard Deviations of Wind Components and Temperature

Standard deviations of meteorological parameter in the

neighborhood of the Marshall Space Flight Center was extracted

from standard climatological tabulations and is shown in the

accompanying table. The climatological standard deviation of

temperature must be modified to an approximate speed of sound

value for comparison purposes. This may be estimated from

Ao _--(c/2T)(AT) __ 0.61(AT) .

The wind and temperature standard deviations display the

same sort of variations with season, but show different variations

with altitude. The standard deviations of wind increase with

altitude while those of temperature decrease. The approximate
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TABLE II

Standard Deviations of Wind Components and Temperatures Estimated

in the Neighborhood of Huntsville, Alabama (8), (9). The Wind

Observations Were Those of 1500 GMT While the Temperatures Were
Those at 0300 GMT.

Winter Spring Summer Autumn

950 mb

OT (°C) 7.1 5.3 2.7 4.9

850 mb

-i
_u (m sec ) 6.2 6.3 5.1 7.5

_v (m sec -I) 8.3 7.9 4.4 6.4

_T (oC) 5.9 5.0 2.4 4.2

700 mb

_u 12.1 8.3 5.7 8.5

ov 8.9 8.6 5.1 7.5

OT 5.0 3.9 2.0 3.6

500 mb

_u 10.6 11.8 6.5 11.5

_ 12.0 I0.4 5.7 9.8

OT 4.4 3.2 1.9 3.5
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equality of the standard deviations of the two wind components

is evident. (The individual component standard deviations are

to be used and not the vector standard deviation.) Though the

wind component and temperature standard deviations are of the

same order of magnitude, the numerical value of the temperature

"sigma" is roughly half those of wind and when adjusted by the

factor 0.61 to convert to speed, they are reduced to ¼ to ½ the

wind values. Consequently, the wind may be expected to play

the dominant role in introducing errors in intensity of sound

estimates on a climatological or forecast basis.

2. Interlevel Wind Component Correlations

The correlation coefficients for wind components at various

levels are reasonably available for stations throughout the

United States either at standard pressure levels or at standard

altitude levels. Tables IV and V illustrate values that may

be reasonably representative of values pertaining to the area

near Huntsville, Alabama. The correlation coefficients are given

at standard pressure levels. The conversion of altitude levels

on the basis of a standard atmosphere is shown in Table III.

3. Interlevel Temperature Correlations

Data on interlevel temperature correlations are not as

readily available as for wind. The example shown in Table V

pertains to combined data from Washington, D. C., and Tampa,

Florida. The character of the interlevel temperature correla-

tions differs radically from that of the wind components.

I
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TABLE III

Standard Pressure Levels in Terms of Altitude Based on a

Standard Atmosphere

Pressure Level

(millibars)

Altitude

(kilometers)

Pressure Level

(millibars)

Altitude

(kilometers)

i000

95O

85O

7OO

6OO

5OO

4OO

3OO

0. II

o.54

1.46

3.01

4.20

5.57

7.18

9.16

250

2OO

150

i00

8o

5o

2O

I0

IO.36

l1.79

13.62

16.64

17.64

20.64

26.59

31.2o
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TABLE IV

Interlevel Wind Component Cor_tion Coefficients (Interpolated
from Nashville and Montgomery_ v_). The Level is Given in

Millibars (Table Iii for Conversion to Kilometers), Standard

Deviation in mps. The Interlevel Correlations for the East

Pointing Component Are Shown Above the Diagonal (I.000) and

for the North Point Wind Component Below the Diagonal.

SUMMER

LVL 950 850 700 500 400 300

SD 5.4 5.8 6.6 8.4 9.7 12.0

950 5.4 1.000 .748 .494 .344 .244 .148

850 6.4 .782 1.000 .707 .534 .433 .230

700 7.0 .530 .738 1.000 .758 .661 .552

500 9.0 .430 .540 .728 1.O00 .854 .740

400 i0.5 .323 .444 .634 .846 1.000 .841

300 13.1 .231 .330 .532 .720 .830 1.000

WINTER

SD 5.2 5.7 5.9 6.8 9.2 ll.6

950 5.6 1.000 .776 .498 .276 .160 .016

850 6.4 .770 1.O00 .607 .427 .302 .180

700 7.4 .598 .774 1.000 .630 .547 .452

500 8.8 .424 .572 .716 1.000 .814 .660

400 10.8 .330 .498 .652 .824 1.000 .837

300 14.0 .232 .388 .550 .750 .860 1.000

LVL 950 850 700 500 400 300
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TABLE V

Interlevel Temperature Correlations (Averaged Values for
Washington, D. C., and Tampa, Florida(ll)). Levels Are Given

in Kilometers and Standard Deviations in Degrees Centigrade.

SUMMER

Level SD Sfc I 2

Sfc 3.3 1.000

1 1.9 .591 1.000

2 1.7 .355 .800 1.000

4 1.7 .266 .520 .658

6 1.9 .278 .507 .655

8 2.3 .290 .504 .670

1.000

4 6 8

.786 1.000

.664 .860 1.000

WINTER

Level SD Sfc I 2 4 6 8

Sfc 5.8 1.000

1 5.8 .731 1.O00

2 5.2 .59o .858 1.ooo

4 4.7 .485 .700 .828 1.000

6 4.6 .436 .636 .702 .878 1.000

8 4.1 .413 .560 .638 .690 .835 1.000
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C. CHANGES OF WIND OVER SHORT PERIODS

i. Wind Variability Over Shorter Periods

In a recent study by Nou (12), the changes in wind for

periods of six to twelve hours are reported. The results are

summarized in the following table for Shreveport, Louisanna.

As is the case for nearly all tabulations on the variability of

winds, the data are not what is needed, and what is needed can

be deduced only by using drastic assumptions. The columns

headed MD are the means of the deviations without regard to

sign. The columns headed RMS are the corresponding root mean

square values.

TABLE VI

Some Wind Variability Statistics for Shreveport, Louisanna (12)

6 hrs.

12 hrs.

Direction Speed Vector

(Degrees) (mps) (mps)
MD RMS MD RMS MD RMS

ALL LEVELS AND SEASONS

19 28 3.8 5.2 6.2 7.6
25 36 5.0 6.6 8.4 IO.i

6 hrs. Jan

Apr

July
Oct

12 hrs. Jan

Apr

July
Oct

6hrs. 3kn
6kn

12 hrs. 3 kn
6kn

ALL LEVELS BY SEASONS

14 20 4.5 6.1 7.3

35* 51" 2.5 3.2 .5 5
16 25 3.5 4.9 5.6 7.0

17 26 6.0 8.0 lO.l 12.3

_9 _ 6o 1:9 _:_ _ 8
43* 59* 3.i 0 6.8

22 32 6.5 6.5 7.9 9.6

ALL SEASONS BY LEVELS

28 41 2.8 _.9 5.0 6.1
22 32 3.5 .8 6.0 7.4

2_ {o_ _._ 4._ _._ _._4.7 6.2 8.0 9.7

*Unusually large values
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TABLE VII

Average

Wind Variability Measures (13)

Time Wind Direction and Speed Changes

Wind Speed

Direction (°/30 min)

Speed (mph/30 min)

as Function of

Average Speed (mph)

6.7 15.7 24.6 33.6

12.0 6.0 5.0 3.0

0.7 1.1 2.2 2.7

(No significant changes with height.)

Average Horizontal Wind Speed and Direction Changes as Function
of Height

Direction (°/ll mi)

Speed (mph/ll mi)

12

2.7

Height (10 s ft)

6 l0 15 24 36

lO 6 4 4 3

1.8 1.1 1.3 2.7 2.2

Wind Variation With Time and Distance

I
Time Std. Dev. Distance Std. Dev.

I/2 min. 1.3 mph 1/2 miles 1.3 mph
5 min 1.7 3 1.9

| _o _ _ _I hr. .75 70 7.75

2 6.0 112 lO. 25

4 7.25 300 18.75

i 8 9.75 _75 19.75
12 12.0 50 22.25

94 18.0 57o 26.5

!

i
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Summary of _t

TABLE VIII

(Vector Std. Dev.)(ml hr -_ ) in Lower 500 Fto (15)

Speed
Time Interval (mln)

0 2 4 6 8---

5 mph 0.8 2.4 2.9 3.2 3.4

I
I

I

i0

15

2O

25

1.3 3.5 4.2 4.7 5.0

1.8 4.6 5.5 6.2 6.6

2.3 5.6 6.7 7.6 8.1

2°8 6.7 8.0 9.1 9.5

I

I
I

I
I

I
I

I
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The differences are for time intervals of six and twelve hours

and are those of the wind direction, wind speed, and the magnitude

of the vector wind difference. If we assume that the differences

of the wind vectors is circularly and normally distributed (not

true), then the root mean square component differences will be

_FZ/2 (0.707)

times the value given in the last column (Vector, RMS). Unfor-

tunately, the subdivision by level and season is not made. To

get seasonal values by level, one must make assumptions about

the seasonal variation. If the seasonal variation at 3 and 6 km

is assumed to be like that at all levels combined, the following

estimate seems reasonable:

qlevel _ Cseason /qyear

season

( _-2-/2 )Clevel "

A comprehensive review of wind variability was made by

Baginsky, et al (13) some results of which are shown in Table

VII. Durst (14) has described the wind variability in time as

ct2 = 2a 2(1-r t) , rt = e-at , a = 6.9 x i0 -2

where e is the climatological vector standard deviation and

is the root mean square vector difference after an elapsed

time t. The formulation above holds reasonably well for 5

minutes < t < 24 hours with little variation with altitude to

above the 500 mb level• Some data on variability near the

ground for short time periods is given in Table VIII from

Bellucci (15) .

a. Some Limitations of Wind Variability Data

Data on the variability of wind is usually given in

terms of mean variability of direction and/or speed and the mean
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or root mean square vector variability. None of these nor any

combination describe the variability of wind with distance in

an adequate way. This is because no account is taken of the

eddy structure of the atmospheric winds. This must be accounted

for by considering the wind components separately in terms of

suitable reference directions. This is illustrated in regard to

distance variability in Figure 8, in which the mean square

difference of components is shown as a function of the differene

in distance for the longitudinal (along flight path) and

transverse (across flight path) directions (16). These data

pertain to levels near 30,000 feet but not in the jet stream.

The larger size of the transverse variation as compared with

the longitudinal is independent of direction chosen and is a

characteristic of atmospheric eddies. This means that the

distribution of the wind vector differences is not circularly

distributed, a fact that is ignored completely where only the

mean or root mean square vector difference is tabulated. The

RMS transverse component appear to be approximately_F_ times

the RMS longitudinal component.

In terms of the expressions at the first of this section

for the mean square differences, the formulation of the

correlation coefficient is different for the two components

of the wind.

2. Temperature Variability Over Shorter Periods

Cox (17) indicates values of temperature variation from 1.0

to 3.5 o C. over a half-hour period with observations made every

6 seconds.

The variation of temperature near the ground (standard

meteorological exposure) is extremely complex. The removal of

the diurnal variation helps to simplify the situation somewhat

but great complexities remain. These complexitities are brought

out in the discussion of Godske (18) concerning the temperature

at Bergen and Oslo, Norway, over a 25-30 year period. For
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example, the diurnal variation of temperature as measured by

the standard deviation varies on an annual basis from 2.6 ° C•

to 3.8 ° C• On the other hand, the amount of diurnal variation

depends on the time of day used for the comparison. In April

it is largest near midday (13 hours, 3.8 ° C.) and a minimum at

midnight (01 hours, 3.0 o C.), while in January it is least at

midday (3.1 ° ) and largest at night (3.7 ° ). The correlation of

temperature as a function of time larg has the same character-

istics in that it depends not only on the time lag, At, but

also on the time of day, t, from which the lag is measured,

r = r(At, t). As an example, for December, r = 0.77 = r (i day,

t), rather uniformly through the day, but in April, r(l day, 19

hours) = 0.75, while r(l day, 06 hours) = 0.66, and in September,

r(l day, 06 hours) = 0.48, while r(l day, 19 hours) = 0.67• If

one roughs in an experimental correlation coefficent of the

form exp(-at), then 1.5 _ a < 0.65 (days-l)• The surface

temperature variation (even after removal of annual and diurnal

effects) is quite nonstationary.

Gossard (19) indicates that at altitudes from 1,000 to

3,000 feet on the Southern California coast, the RMS temperature

fluctuation over a four minute period is about 0.26 o C. with a

scale length of about 250 feet. The corresponding RMS vapor

pressure fluctuation is about 0 4 mb. Crain, et al (20)

indicate scale size of a few hundred feet at altitude of near

1,000 feet decreasing to 5 to 15 feet near the surface. In the

above, the scale size is used in two different senses. In

Gossard's work on balloon measurements, the scale size is

actually a time scale which is converted to distance on multi-

plication by the wind speed. It does, however, conform roughly

to scale size obtained from aircraft measurements of Crain, et

al.(20)

Definitive measurements of temperature variability in the

upper atmosphere were treated by J. S. Sawyer _21j in such a

way that the required variability parameters are explicitely

I
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given. The standard deviations of the temperature fluctuations

were found to be 0.5 ° F. under normal lapse rate conditions and

0.75 ° F. for inversions. The correlation coefficients as a

function of height separation were found to be 0.82 (400 ft),

0.57 (800 ft), 0.24 (1200 ft), 0.08 (1600 ft), 0.00 (2000 ft

and larger).

I

I
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D. DEPARTURE FROM EXPECTED CONDITIONS

The accuracy of expected wind and temperatures is measured

in many ways. The most convenient measures for our purpose are

those in terms of the "relative root mean square error," the

ratio of the root mean square error of the forecast to the root

mean square value of the climatic variability. The figure

provided by such a measure gives immediately a standard deviation

........ econs_u_t .... of a reasonablevalue tha _ will permit the _ *_ _ _

covariance matrix for estimating the range of perturbation that

might occur in an observed sounding of wind components and

temperature.

A convenient norm for measuring the effectiveness of a

forecast is "persistence." The persistence forecast is formalized

by the assertion that the wind and temperature will remain as

last observed. Another forecast norm is "climatology," formalized

by the assertion that regardless of present conditions, expected

conditions will be those of the climate mean values. Each of

these forecast norms may be thought of as a "best" forecast in

some domain of time or distance. The situation is illustrated

graphically in Figure 9 where time lag is the abscissa and

relative error (root mean square) is the ordinate. The relative

residual error of the climate forecast is always I. It is

reasonably obvious that for estimates a long time in the future

that an estimate based on the climate mean values cannot (at

present be improved upon. The error of the persistence forecast

is given by

c_pl_ = _ 2(i - r)

where r = correlation coefficient relating present and future

parameter values, _ = standard deviation of error (root mean

square error), _c = standard deviation of the natural error or

climate estimate. For time lags large enough, the present

parameter value is uncorrelated with the future value so that
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r approaches zero, and the relative root mean square error

approaches 1.414 = _-_. Thus, the persistence forecast at

long time lags is appreciably worse than the climatological

forecast. The two are of equal value at such time that r =

0.5, i.e., while the correlation between present and future

parameter values is still appreciably large.

A third forecast nc m is the "statistical estimate" given

by the relation

p : p + r(p o - p)

where p = the estimate of the parameter, p = the mean value of

the parameter (the climate estimate), po = the observed value

of the parameter, and r = correlation coefficient (function of

time lag or distance). In another form

p = rp o + (I - r)p

the statistical estimate is a value intepolated between the

climate estimate (p) and the persistence estimate (Po); further,

it is the best of all possible interpolated values. The

relative root mean square error of the statistical estimate is

given by

_,/% = Vl -r _

where _ = root mean square error of the statistical estimate.

It is readily seen that

%<ao, _<%

for all time (or distance) lags.

Idealized curves for _/_ and _s/_c , the relative

root means square error of persistence and statistical forecast

norms are shown in Figure 9.
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The verification of forecasts has produced little informa-

tion that gives explicitly the root mean square forecast error.

Thompson (22) presents an illustration analogous to our Figure 8.

Buell (23) has collected data from various sources. The scatter

of forecast verification data is so large and verification is

carried out by such widely different methods that it is impossible

to plot points on Figure 9 to represent the situation. Two

rather wide-hatched areas are indicated at 12 hours and 6 hours.

The lower part of the hatched areas indicates the skill of

objective forecast techniques (numerical prediction) while the

upper part of the range represents the skill of subjective

forecasts. The skill of subjective forecasts is generally

accepted as insufficient to warrant an effort over a shorter

period than six hours.

The trend of the persistence and statistical forecast

errors shown in Figure 9 applies particaularly to wind forecasts.

For such items as temperature, the general shape of the curves

remains about the same, but the critical point where persistence

equals climatology (shown at 24 hours with ordinate 1.O) moves

to the neighborhood of 48 hours. The relative position of the

forecast "areas" to the curves remains unchanged. The details

of the curve labeled persistence, in the case of temperature

at the surface (instrument shelter level), is particularly

complex (18) .

Even in applying Figure 9 to wind estimates, it is under-

stood that _ and _c are "vector" standard deviations. In the

case of individual wind component standard deviations, the

components follow different curves for persistence. The reasons

for this behavior lie beyond the scope of this study (see

Buell{_6) ).

The shape of the curves for persistence and statistics

near the t = 0 is that given by Durst (39) and is approximated

_/--_. For practical purposes, the curve should intersect the
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ordinate at t = 0 near the point marked A(q/q c _ 0.2). This

is due to the fact that the small scale variability of atmospheric

parameters such as wind and temperature are dominant influences

near t = O. The definition of the curve in this region requires

special experimental techniques that are usually not compatible

with operational requirements.

I
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E. SOME SPECIFIC DETAILS

I. Short-term Variability

Temperature and wind fluctuations corresponding to a

correlation function described by Sawyer t21} were used to

t _

describe the short period variability. The standard deviations

assigned to such fluctuations were 0.3 o C. and 0.6 mpsfor

temperature and wind components, respectively. These standard

deviations are on the small side as compared with values

encountered over a few tens of minutes quoted in the previous

sections. They were deliberately chosen so to present what

might be considered the most conservative case that w_ ld be

encountered in a practical situation.

The correlation function above was entered as a height

lag correlation matrix of considerable size (mostly zeros

except bordering the principal diagonal) since the spacing

between levels was only 400 feet and a height range of several

kilometers was required. Since this matrix corresponded to

fixed levels while the soundings to be perturbed were recorded

at variable levels, the perturbation of the sounding was

accomplished by interpolation between perturbations at fixed

levels.

2. Longer-term Variability

The interlevel correlation tables for wind components and

temperature (Tables IV and V) were used as a basis for the

interlevel correlation structure of the perturbations. The

standard deviations used to model perturbations that might

occur were taken as one-quarter and one-half the climatological

standard deviation for the reason concerned and conditions

expected correspond to a departure from a forecast of about

6 hours and 12 hours after the sounding (with a small bias to

a somewhat shorter time of 3 to 6 hours, respectively, if

persistence only is considered).
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Since the separation between levels in the above correla-

tion coefficient tables is rather large, values were interpolated

at convenient intervals (250 m) to roughly correspond to the

spacing between levels in the meteorological soundings. The

resulting correlation matrix was then treated as in (I) above

for short-term variability.

The interpolation process gives reasonable correlation

coefficient except for values that would border the principal

diagonal of the matrix. The principal diagonal entries were

assigned the value 1.000 and the interpolated values in

diagonals bordering the principal diagonal were obtained by a

process that took this into account.

The resulting matrix of correlation coefficients is

somewhat unrealistic if considered from the viewpoint of the

large scale atmospheric motions. On the other hand, it is

intended not only to mimic the large scale motions but also

the smaller scale eddies. The difficulty with the interpolated

sounding lies in the fact that as separation becomes small the

correlation coefficients approach 1.O linearly. Even Sawyer,s_21jt_

small scale correlation structure does not behave in this way.

The situation is automatically adjusted by the fact that when

applied to the soundin_ values are interpolated from fixed

matrix heights to sounding heights as they may occur. This

results in "smoothing" of the perturbations on application to

the sounding. If one were to work backward from the perturba-

tions applied to the sounding to the interlevel correlation of

the perturbations, the "sharp" peak on the diagonal would not

be present and instead there would be a "rounded" peak; Just the

approach to reality that we wish to obtain.

(The same situation applies to the case of the short-term

variability. Here the matrix initially contains a "rounded"

peak along the diagonal. The interpolation process tends to

broaden this peak somewhat. Though the effect is present, it

is minimized by the fact that the level spacing is smaller in

this correlation coefficient matrix.)

I
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The effect of time lag on the correlation coefficients

has been ignored. This effect has been introduced through the

control of the standard deviation of the perturbation of the

temperature or wind component. Though some data exist for time

lag correlations of wind, little is available for temperature in

this more extended sense.
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A ,

T..T_ mC_P_ER IV

VARIABILITY OF THE ATTENUATION COEFFICIENT

GENERAL DISCUSSION

The coefficient of attenuation is employed in the form

I = I. e -_r (I)

where I. is the unattenuated intensity at a distance r and

where _ is the attenuation coefficient. The distance, r, is

strictly the distance along the ray path, but is not appreci-

ably greater than the distance along the ground. The attenua-

tion coefficient in this form is more properly expressed as

the average attenuation.

r

= (I/r)f _(s)ds (2)

O

where _(s) is the attenuation at the distance s along the ray

path.

Let the operator 6 indicate a perturbation from nominal

conditions. Then from the above

r

= (l/r)/(8_)ds
o

in which the perturbation of the ray path itself is neglected.
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I The mean square variation of the attenuation coefficient is
then given by a double integral

I 1_ r

-(_.7_=-(_/_l f f :i_ ,)(_,,13_ _, _,,
| oo

where 6_ _ is the perturbation of the attenuation coefficient

at s _ while 6_" is that at s".I

I
Let _ be considered as dependent on an atmospheric para-

meter, p. Then 6_ =--(_/_P)6P so that

I
I
I

I
I
I

r r

(6_.) _ = (1/r_)ff(_'/ap)(a_"/ap) (6P')(6P")ds' ds".
0 0

The product of partial deviations under the integral can be

evaluated adequately only in specific cases. These factors are

taken outside the integral and assigned a common average value

for the path so that

r r

(6_.Y _ [(a_/ap)/r]_ff (6p')(6p _ ) ds' ds" .

0 0

Let the correlation coefficient relating the perturbations at
I #

s and s be indicated by R(s t, s_). Then

I

I
I

I
I

(_.)_ __ E(a_/ap)/r] _
r r

0 0

To simplify further the integration, the correlation function

is assumed to be function of only the separation between s' and

s _ along the path

r r

(6_.) _ _ [(_lap)/r]_(6p)ff R(s" - s') ds' ds"
0 0

I
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(6_,) 2 _ [(_/_p)/r]_(6p) 2

r

2/(r-s)R(s)ds .
0

(3)

The value of the integral factor depends on the detailed

structure of the correlation coefficient. This factor is not

critical for our purposes. For the small scale, two examples

indicate the magnitude of this factor. Let R(s) = exp(-s/£)

where £ is a size parameter.

Then

r

2/(r-s)R(s)ds : r£[l-exp(-r/£)]

0

- Z_[l-(r/_ + l)exp(-r/£)] __ 2 r£, r > > £. (4)

As another example, let R(s) -- exp(-se/2£ 2) whence

r

2/(r-s)R(s)ds = (_ _r)erf(r/2£)-2£2[l-exp(-rS/2Z 2)] ,
0

I __ 2V__ r £ ,

I
r>> £ . (5)

In the case of the large scale perturbations, the value

of R(s) may be taken as near 1 over the whole range so that

r

2/ (r-s)R(s) ds = r2

O

(6)

The mean square perturbation of the total attenuation co-

efficient then becomes, using (4) or (5) in (3)
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(6_.) 2 _ (_/_p)_(6p) 2 • k • (£//r) (7)

for small scale perturbations Here k lies in the range from

2 to 2_. For the large scale perturbations, using (6) in (3)

( 6_. ) 2 __ (_/_ p)S (6P) _ (8)

It is readily seen that the small scale mean square per-

turbation of the total attenuation coefficient approaches zero

for large distances (from (7)), while it remains constant

(from (8)) for the large scale perturbations.
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B. APPLICATION TO THE CLASSICAL ABSORPTION COEFFICIENTS

The absorption of sound in air may be divided into three

parts

where

_ = classical absorption coefficients,

_2 = intermolecular absorption,

_3 = miscellaneous other absorption.

The classical absorption coefficients are given by

_i = _v + _c + _d + _r

where

_v = absorption due to viscosity

_c -- absorption due to conduction of heat

_d = absorption due to diffusion of molecules

_r = absorption due to radiation of heat .

Nominal values of the classical absorption coefficient are

given (40) (db/km) in the short table inserted below. They

have the variations
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T _v + _c _d _r

-50°C 1.08 x (f2/p.) x I0 -I 1.21f 2 x lO -2 1.68 x 10 -2

O°C 1.18 1.25 1.51

50°C 1.25 1.31 1.38

I

I
l

l
I
I

I
I

I
I

I
I

I

with the temperature of +l.7(f2/p *) x 10 -4, + l.O(f _) x 10 -5

and -3.0 x 10 -5 db km -I (°C) -I, respectively, where f is fre-

quency in kilocycles and p* is pressure in atmospheres.

Using nominal values at O°C with f = i kilocycle, p* = i

atmosphere, then _i = .147 db/km while (8_I/_T) = 1.53 x 10 -4

db km-l(°c) -I. For small scale temperature variability in the

atmosphere of 0.3°C, the root mean square variation of the

classical attenuation coefficient is

_(6_.) 2 (small scale) --_4.6 x lO 4 _-k(_/r) .

A nominal value of _ = 0.2 km, and k = 2, then at i0 km the

RMS variation of classical attenuation from small scale varia-

tions is 9 x 10 -3 db, an amount too small to be considered.

For large scale variability of 3°C, corresponding to a time

lag of near 12 hours under worst (most highly variable) condi-

tions, the RMS attenuation variability at i0 km is approximately

1.4 x I0 -1 db, an order of magnitude larger, but still quite

negligible.



I

I
I

I
I

I
I

I
I

I
I
I

I
I

I

l
I

-63-

C. APPLICATION TO INTERMOLECULAR ABSORPTION

The coefficient of attenuation due to intermolecular

absorption may be written as

where

_ = am --_max w

_max _- (18"9 + 0.45T)f x i0-3

w = 2_/(i+ x_)

x = fm/f

fm= 1.O x l0 s h_

f = frequency in cycles

T = temperature in degrees Centigrade

h = absolute humidity (grams m-3)

and the _'s are in units of decibels per kilometer. The numeri-

cal expression for _max as a function of temperature is simpli-

fied from a more complex expression in terms of physical para-

meters(%l). The absolute humidity is expressed in terms of more

accessible parameters as

h = (emw/RT) X i0 s

where

e = vapor pressure of the water vapor

T = absolute temperature

mw = molecular weight of the water vapor

R = gas content .

I
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The factor of 106 converts to grams per cubic meter, a

more convenient unit than grams per cubic centimeter. An

abbreviated table in terms of saturation vapor pressure and

saturation absolute humidity as a function o_" temperature is

given.

TABLE IX

SATURATION VAPOR PRESSURE AND ABSOLUTE

HUMIDITY AS FUNCTION OF TEMPERATURE

T(°C) e(mb) h(gm -3) T(°C) e(mb) h(gm -3)

-30 0.38* 0. 342 5 8.72 6.757

-25 0.64* 0. 559 l0 12.28 9.401

-2O i. O4* 0. 894 15 17. O6 12.832

-15 1.90 1.403 20 23.40 17.300

-i0 2.86 2. 158 25 31.70 23.049

-5 4.22 3.261 30 42.48 3o.371

o 6.11 4.847 35 56.30 39.599

With respect to a plane ice surface, others with respect
to a plane water surface.

The value of _max is linearly dependent on the frequency.

The factor w is dependent on both the frequency and absolute

humidity in such a way that w has the maximum value of i when

f = fm = 1.01 x i0 _ h_.

Since the perturbation of the attenuation coefficient de-

pends on both temperature and vapor pressure perturbations, we

write instead of (7) or (8), the expression

(6_m)_ -- [(B_m/BT) 2 (6T) 2 + (B_m/Be)_(6e) _](k_/r) (9)
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where the final factor is set equal to i for large scale

fluctuation. In the above, the temperature and vapor pressure

perturbations are considered as uncorrelated and to have the

same scales and correlation functions.

The derivative expressions, coefficients of the perturba-

tion variances, are

b_m/_T = _max " w LO 0"45
.45T-I04.1

/i-x2_/2 ",
2_m/be = _max _ \I--_]\_]

2 /._'I-x 2 "_7
- _ • <__j (io)

(ll)

where, in the first, T is in degrees absolute and the first term

in brackets is confined to the range from 265°K to 310°K (the

valld range for _max = 18.5 + 0.45T(°C) and is the expression

(i/_max)(b_max/_T)). Aside from the linear dependence of _max

on frequency, the frequency enters these expressions in w and

(l-x_)/(l+x2). Selecting appropriate maximum values, then

]_m/_T[ < _max[0.%5/(O.45T-lO%.l) + I/T] _ O.028_max (12)

[_m/be[ < _max/e (13)

and the resulting upper bound for the variance of the perturba-

tions is given by

(_m)2 < _2max((O.O38)2_T-_ + (6e)--"_/e2)(k_/r) .

For small scale variations with _max _ 20 db/km at one kilo-

cycle f_6T-_= 0.3°C, the term due to temperature variations

amounts to .168f_ and with k = 2, g = 0.2, r = i0 km, the

result at i0 km is 0.336 db root mean square variation. The

part due to variation of water vapor pressure (humidity) (with
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nominal estimates of

_ (Be) 2 = 0.4 rob. e - 8 mb.)

becomes 2 db, an appreciable amount. The combination of these

two components into a total root mean square variability of the

intermolecular attenuation is weighted so heavily on the side

of the part due to vapor pressure variability that the temperature

variability contribution is of little importance.

For large scale variability, the factor k£/r is replaced by

1 and

(6T) 2 m 3.0°C , _ (Se) 2 _ 2 rob.

Under the same conditions as before, the part due to temperature

variation becomes 1.68 db/km while that due to vapor pressure

variation becomes 5 db/km. These are, like before, values that

are much too large.

The estimates (12) and (13) supply upper bounds that are

unrealistically large. In arriving at the above estimate of

the variability of the attenuation due to intermolecular absorp-

tion, the values of x used to approximate the derivatives are

those giving maximum values of w = 2x/(1 + x 2) and w(1 - x 2)

(1.0 and 0.5, respectively, though the second should be 0.515).

Conservative, but frequently dependent, estimates may be obtained

in the form

< =,[o. 5/(o.45T-lO4 1)+ 2/T]_=0.03=, (14)

I < =,/e

where a, on the right is an average value of the attenuation

coefficient at the frequency concerned. Since a, = ama x • w,

w = 2x/(1 +x2), x = _/f, the value of a, may be less than

ama x by an order of magnitude or so. In this case a nominal

(15)
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value of a m of 2 db/km replaces that for _max (20 db/km).

The resulting small scale variability is then about 0.2 db

at I0 km. For large scale variability, the estimate is .5

db/km or 5 db at I0 km.

i
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CHAPTER V

CONCLUSIONS

The variability of the meteorological parameters do not

permit the estimation of sound intensity level more accurately

than with a standard deviation of 5 db. This is the case

regardless of whether a reasonably long or a very, very short

time elapses between specification of the meteorological

parameters from sounding observations. This amount of error

is inherent in the small scale variability of the atmospheric

parameters.

Though there are soundly based objections to using the

ray tracing method for estimates of sound intensity (failure

of the method to satisfy in detail the basic assumptions

involved), it is not clear that any (physically) more satisfying

method of intensity estimation would result in less variability

of the estimates.

The effect of atmospheric variability on the absorption

coefficients is relatively small except in the case of inter-

molecular effects that depend on the humidity. The small

scale variability of the atmosphere contributes little to their

variability, amounting to a less than 1 db at lO km. The large

scale variability is more effective since conditions along the

whole ray path are changed. These may amount to as much as 5 db

at lO km.
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Although the variability of sound intensity estimates (for

direct rays) is near 5 db regardless of the variability parameters

(over the range covered), the probability of rays returning to a

fixed point is highly variable. It appears that this information

would be of value for operational purposes. To provide this

information, the ray tracing program may be augmented to provide

a Monte Carlo perturbation of the sounding and the tabulation

of these probabilities.
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APPENDIX A

RAY TRACING

The fundamentals and some details of the ray tracing

technique are discussed in this Appendix. To begin with,

L. M. Brekhovskikh (1)(p. 461), "Unfortunately, ray construc-

•u_ _±_±_±n_ the nature of the wavetions which are _p in

propagation rather frequently turn out to be completely use-

less for a quantitative description." This situation is to be

kept in mind, since sound intensity estimates based on ray

tracing methods are discussed and used almost exclusively in

those regions of the sound field where they may be applied.

The reason for using ray tracing (in spite of the above warn-

ing) lies quite simply in the fact that the range of atmos-

pheric conditions which must be covered in estimating the sound

intensity is so varied that estimates based on a more complete

solution of the wave equations are beyond hope of attainment.

The section on fundamentals follows the treatment of

Ingard" ''(2_W_o in turn follows that of Blokhintsev_25_nd is

t _

included to put into perspective the fundamental background of

the ray tracing method.

Some details are discussed in the section on the ray trac-

ing method with emphasis on the distinction between the ray

tangent and the phase normal, though this difference is rela-

tively unimportant for practical considerations.

The physical assumptions behind the ray tracing method are

considered in detail in terms of their practical significance.

The section on general consideration of the assumptions is

followed by a discussion of the discontinuous character of

dr/de . This comes about through violation of the assumptions
o

and comments on the gradient of the focusing factior, which

must be severly bounded if the assumptions are to be satisfied.

The intensity at a "focus" has long been known to require special

treatment since the ray tracing assumptions are not satisfied at

such a point.
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The use of "rounded maxima" offers at least a partial

way out of the problems introduced by the violation of the

assumptions in the usual "linear layer" treatment.

A. FU_YDAMENTALS

The results of approximating the fundamental equations of

acoustics in a moving, nonhomogeneous medium lead, in the zero'th

approximation, to the "eiKonal equation"

Iv e l_ : q_/c_ , q=co-v®.v (A.1)

where e is the phase of the wave, co is the reference speed

of sound, c the speed of sound as a function of location

(coordinate) and v is the wind vector. The quantity q/c =

is the generalized index of refraction. The surfaces e =

constant of the partial differential equation (A.I) represent

the expanding sound waves. The complete solution of the ray

geometry eventually resolves itself into finding the solutions

of this equation or of carrying out the equivalent processes

(either exactly or approximately). In obtaining (A.i) it is

assumed that: (a) the changes in the medium are small in a

distance of a wavelength, and (b) that the wave number k

(k = 2v/k , k = wave length) is large (wavelength is small).

The analysis of the implications of (A.I) lead to the

association of two velocities with the propagation of the

sound wave. The phase velocity is given by

V f= c+v n

It is directed along the normal to the surfaces of constant

phase ( e= constant), and is the projection of the wind

speed vector on the normal to the wave. The sound energy is

propagated in a somewhat different direction determined by

the ray velocity

VS = C In -I- V

(A.2)

(A.3)
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where in is the unit vector normal to the surface of constant

phase and V is the wind vector. It is readily recognized that

the projection of Vs , the ray velocity, on the direction

normal to the phase surface, m , has the magnitude of the

phase velocity

"ray tube" so

p2 V J pZ V Jo
S = 0 So

p q c2 po qo Co 2

where p

p =

J =

V =
S

amplitude of the sound pressure

air density

area of the "ray tube"

ray velocity

and where the unmodified quantities refer to a point P while

those with subscript " "o refer to some other point Po on the

same ray tube. The sound intensity is usually proportional to

P_ The intensity at P in terms of the intensity at Po is

i = io(Jo/J)(Vso/Vs)(p/_o)(q/qo)(O/Oo)_ .

When the points P and Po are at essentially the same level, it

is readily seen that all of the ratios are individually very

near unity with the exception of the ray tube area ratio

which may have undergone a considerable change during the

propagation process. The approximate intensity at P is then

given by

I = Io(Jo/J).
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It is readily seen from Figure I0 that the ray tube cross

section PB at P is given by

PB = (PP')sin¢p

and that the horizontal distance between rays separated by the

initial angle A¢ is

whence

PP' = (_r/$,o)A¢

PB = (_r/3¢o)sin¢p(A¢).

Taking the cylindrical symmetry of the representation into

account, the area of the ray tube is 2wr times the distance

PB, so that

J = 2_r(_r/_¢ o)sin¢p(A¢).

The total energy emitted by the source is represented by

W so that the most that is emitted in the interval A_ is given

by

aw = IoJo = w cos¢o(_¢) /2

which is identified with the total energy of the ray tube at

unit distance, Io Jo . Then from the above

I = W cos¢o/4_r(dr/d¢o)sinCp .

If we let I. = W/4wR 2 be the intensity that would prevail

at a distance R with spherical spreading under homogeneous

conditions, then

I = I.[R2cos¢olr(dr/d¢o)sinCp] .

i
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Since, for our purposes, $p So and R = r

I = l.'f, f = r/(dr/d_o)tanO_ ,

, we may write

!

I
I
I

I
I

I
I

I
i

I
I

in which f is called the "focusing factor." When the source

does not radiate uniformly in all directions it may be nec-

essary to introduce additional dependence of I, on the altitude

and azimuth _o, eo of the rays.

B. THE RAY TRACING METHOD

I. The Ray Equations

Methods of tracing sound rays in the atmosphere has a long

history and dates, at least, from Lord Rayleigh_2O_ho_ r_ credits

Prof. James Thompson (1876) with the method of estimating ray

curvature (for light rays) and Prof. Osborne Reynolds (187_)

with pointing out the effect of temperature on the speed of

sound. Since that time the literature on ray tracing has be-

come so very extensive that 9nly the most important references

need be mentioned. R. Emden{27_nd E. A. Milne(28_reat the pro-

blem with great care, particularly with regard to the general-

ization of Snell's Law to an atmosphere in motion. This

particular topic, the generalization of Snell's Law, is treated

with great care by Kornhauser (29) Nearly all ray tracking

techniques are based on approximations to the equations for the

sound rays, however, an exact method for integrating the equa-
(3o)

tions under reasonable assumptions is given by Rothwell .

The method of Milne is followed in the analysis used by Dorman

and Brown(31!

The differential equations of the "phase normal" locus or

of the "ray" may be written from the velocity expressions (A.2)

and (A.3). For the "phase normals" from (A.2)



lie

I

i

I

I
I

I

I

-75-

dx/dt = (c + Vn)COS _

dy/dt = (c + Vn)COS_

dz/dt = (c + Vn)COS Y

V n U COS_ + V COS_ + W cOSy

where ( a , B , 7 ) are the direction angles of the "phase

normal" (*_ angle +_o+_ the +_ng_+_ _ of th_s__ curve makes wit_

the reference axes) and (u, v, w) are the components of the

wind.

For the sound "ray" the corresponding equations from

(A.3) are

dx/dt = c cosa + u,

I dy/dt = c cos_ + '

i dz/dt = c cosy +

I

I

I
II

I
l

l

l

V,

W.

The differential equations of the "phase normals" and of

the "rays," (A.4) and (A.5), respectively, amount to nothing

more than a statement of the velocity relations, (A.2) and

(A.3).

In view of the fact that along a ray the phase normals

are parallel to a fixed plane (see Milne_28_,_" we may take

coordinate axes so that this is the (x,z)-plane, i.e., cos_ = 0.

In such a case we may let a = _ , _ = v/2 - _ so that the

differential equations then become, for the "phase normals,"

dx/dt = (c + Vn) cos_ ,

dy/dt = 0

dz/dt (c + Vn) sir_ ,

vn = u cos_ + w sir_ .

and for the "rays"
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dx/dt = c cos_ + u ,

dy/dt = v

dz/dt = c si_p + w .

For the applications at hand, the time dependence of the

"ray" or "phase normal" coordinate is of little interest. The

time may be eliminated to yield

dx/dz = cot_ ,

for the "phase normals" and

for the "rays".

dx/dz = (c co_ + u)/(c si_ + w) ,

dy/dz = v/(c si_ + w) ,

The presence of the vertical component of the wind in the

denominator above is troublesome, but may be handled by a sub-

terfuge. One may write

dx/dz : (c co_ + u*)/c si_ ,

dy/dz = v*/c sit,p,

where

U

V

: u -w(c cos_ + u)/(c _in_+ w) ,

= cv si_/(o silo + w) ,

so that the presence of' the vertical velocity term is accounted

for by a small perturbation or error in the evaluation of the

horizontal wind components.

|
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2. Integration of the Ray Equations

The ray tracing process consists essentially of selecting

an appropriate method for the integration of the equations for

the rays. Many techniques are available; the choice between

them lies only in arriving at a solution of sufficient accuracy

with a minimum of labor. The most commonly used methods is that

of a "constant curvature" or "circular arc" approximation. In

this case, the ray curvature is estimated for each layer of the

atmosphere and the ray is approximated by a circular arc through

othwell (30]that layer. R uses approximations after integrating

the ray equations exactly. In all instances a fundamental crutch

for the integration process is Snell's Law (the appropriate

generalization to take care of the wind situation).

a) Snell' s Law

Snell's Law in its usual form

c/cos_ = co/cos_o = const.

along a phase normal must be modified for application to a moving

medium. The modifications that need to be made are somewhat
t _

subtle. They have been carried out by Milne t2°_nd later by
t A_

Kornhausert29_ith the result that

(c + u cos_0 + w sinq0)/cosq0 = (co + uocos_o+wosin;_o )/cOS_o

along a ra__zy(rather than along a "phase normal") although the

angles _, _o refer to the inclination angle of the phase normal.

An associated expression due to Milnet2°_s that along a ray the

ratio of the direction cosines associated with the x and y

directions remains constant

tan8 = cos_/cosa = const,

so that the projection of the unit normal to the phase surfaces

has a constant direction in the (x,y)-plane. To obtain the

expression (A.6) above, the coordinate system is chosen so that
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the "phase normals" along the ray concerned lie in the (x,y)

-plane. This requires that B--_/2 and consequently a = _,

7 = _/2 - _ where _ is the elevation angle of the "phase

normal" along the ray.

The terms in w_ wo of (A.6) are not included in the

analysis by Milne_28}r _ but his analysis may be extended to

(29
include them without difficulty. Kornhauser analysis may

be construed as containing these terms though they are not

specifically stated and his further analysis is confined to

a special case in which they are not required.

The vertical velocity components, w, wo, may be combined

with the horizontal component in the formulation of the gen-

eralized Snell's Law by a kind of subterfuge. Thus

where

c/cos_ + u* = co/cos_o + u_

u* = u + w tan_, u_ = uo + wo tar_o .

The vertical wind component is usually two or more orders of

magnitude smaller than the horizontal component and, conse-

quently, (except for exceptional cases) may be considered as

a part of the error or of the variability of the horizontal

component as far as its appearance in Snell's Law is concerned.

b) Circular Arc Approximation

From the equations of the ray path (A.6) and Snell's

Law (A.7)

dx/dt = c cos_ + u ,

dz/dt = c sin_

c/Co_ + u = co/cos_o + _ .



i

-79-

i

The radius of curvature, R, of the ray may be calculated

following Gutenberg_32{t_ The inclination of the ray is given

by

!

tan _ = (dz/dt)/(dx/dt) = dz/dx

i

and since R -_ = d$/ds where s is the arc length along the

ray then

I
!
I

R -I =sin@ , cos _,@ [ d(d_/dx)/dz].

The indicated derivative with respect to z involves the

vertical rates of change of the inclination of the phase normal

d_/dz which is obtained from Snell's Law in terms of the

vertical rate of change of the speed of sound, dc/dz, and wind

component, du/dz . The resulting expression for the ray

curvature is

i

i

(c2 + 2c u cos_ + u2) _.

!

Since the speed of sound is much larger than the wind component,

this reduces to, in the zero order approximation,

: - F(dc/dz)oos_+ (du/dz)]c-_ (A.9)R-l
L.

I
I

I
I

I

If the atmosphere is divided into layers through which the

speed of sound and wind component are linear functions of

altitude, i.e.,

dc/dz = a ,

du/dz = B ,

then the ray may be considered as a circular arc in such a layer.

The parametric equations for the ray through the layer, in terms

of the parameter _ j the angle of inclination of the ray, may be

written as
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x2 - xl = -R(sin$_ - sinS1) ,

z_ - zl = R(cos¢_ - cos_1) ,
(A.10)

where the subscript i indicates the conditions at the bottom

and the subscript 2 those at the top of the layer.

The angles of inclination of the ray at the top and

bottom of the layer are not known a priori and must be calcu-

lated from the equations of the ray and Shell's Law. Thus,

from the equations of the ray

tan_ = c sin_/(c cos$ + u),

sin_ = c sin_/(c _ + 2cu cosq0 + u2)

cos_,: (c co_ + u)/(c +2_.ucos_ + u_)_'_

(A.II)

When the wind speed is small compared with the speed of sound,

the first order approximation becomes

sin$_ _ sin_[l - (u/c)cos_] ,

cos$ r _ cos_ + (u/c)sin2_ .
(A.12)

The angle of inclination of the phase normal, _ , is known

at each level and for each initial value, _o , from Snell's Law

eos_ = e eos_o co - (u - uo)eos_o .

The system of equations (A.8), (A.10), (A.11) and (A.13)

provide a reasonably precise method of obtaining the ray path.

The corresponding approximate system (A.9), (A.10), (A.12) and

(A.13) provides a system which, though not so precise, requires

much less arithmetic. The second of equations (A.10) in both

cases serves little purpose, since the quantities concerned are

somewhat redundant. For example, Snell's Law is nearly the same

as the second of (A.IO) when expressed in the same terms. One

may write Snell's Law in the form

(,A.13)
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c_/co_2 + _ = cl/co_ +

: [c_+_(_-_)]/oo_ + _ + _(z_-_)
Solving for the height difference across the layer, the

expression

F 7

_- _ : Lc_/co_(_+_oo_)](oo_-oo_)

bears a very close resemblance to the second of equations (A.lO).

The first factor on the right resembles the radius of curvature

while the second factor, the difference in cosir2s, corresponds

but with cosines of somewhat different angles (the inclination

of the phase normal instead of the inclination of the ray).

The parameters, cos_ and c, which appear in (A.9), vary

through the layer. It is required to make a choice which

represents average values in order to apply (A.9) to a layer.

A suitable choice seems to be

co_/c : co_o/Co _ _ : (cI+ c_)/2

For layer applications, (A.9) becomes

-I V ]R =- [(dc/dz)co_o/Co + (du/d_)/_ =- (a OO_o/Co + _/_).

It may also be seen from (A.II) that cos_o differs very little

from cos@o. Consequently, for practical applications

R-I : - (_ cos_o+ 8)/co

where c = co has been used in connection with the 8 term.

This last approximation is quite poor, but is Justified in

view of the great inaccuracies in determining 8.

c) Rothwell's Method

Rothwell's (30) solution of the equations of motion

has the virtue of being mathematically exact (within the frame-

work of the physical assumptions). The following is an outline

of his procedure. The basic differential equations and Shell's
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dx/dt = c cos_ + u,

dz/dt = c sin_ ,

c/cos_ + u = co/cos_o + uo = K.

Change to the inclination of the phase normal, _ , as the

__+ _ra_b]_ so that

dx/d_ = (dx/dt)/_1_/dt), dt/d_ = i/(dz/dt)(d_/dz),

and assume that in the layer concerned c and u are linear

functions of height

C = CI + _ Z_ U = Ul + _Z ,

where z is the distance above the bottom of the layer.

Law gives the relation between z and _ .

z=[(K-u_)oo_- c_]/(_+Boo_).

Differentiating Snell's Law with respect to z

d_/dz = -(c + 8cos_p)cos_/c sit,p,

Snell's

so that

dt/d_ = -i/cos_(a + 8cos_),

and

dx/d_ = - (c cos_ + u)/cos_p(_ + 8cos_).

In (A.17) the quantities c and u are functions of _ which may

be found by substituting (A.15) into each of (A.14)

c= [_ - (u_ - c_)]co_/(_+_ cos_)

u =[_Kco_+ (_ -o_)]I(_+ _oo_).

(A.I_)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

li
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Divide (A.17) into two parts, one with the "c"

other with the "u" term so that

/ X"X---- X +

term and the

where dx'/d_ = c/(_ + _cosc_),

dx"/d<0 = u/cos_(a + _cos<0).

Using (A.18) and (A.19) in (A.21) and (A.22) respectively

7dx"/d_= (ula- c_B) + _Kcos_J/cos_o(a+ _cos_)_

I

I
I

Equations (A.16), (A.20), (A.23) and (A.24) then constitute the

differential equations for the rays.

i) The time integral.

The results of integrating (A.18) are of

minor interest but are included for completeness. There are

four cases that need to be considered in each integration.

Case I: a_>8 _

i [ _t2-tl = -(1/6) log tan (_/_ + m/2)3_i +

I {2B/a(aa-82)_}[tan-1{(_--8_)½tan(_/2)/(a+B)}]_

!
I

I
I

I

Case II: 8s>a _

]_t_-t_ --- -(a/s) log tan(_-/_ + _/2) _

{2_/a( 8_-a_ )z}Ftanh -1{(8_-a_)_tan(o/2)/(a+8)_j_1

Case III: a = _ 6 0

_2 7_-_
t2-tl = -(ll_)[log tan(_l_+$12) j<01+ (ll_)[tan(_/2) J_1

(A. 20)

(A.21)

(A._)

(A.23)

(A.S5)

(A.26)

(A.27)
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Case IV :

ii)

due to x' from (A.23).

following:

Case I: _>8 _

Yx_ - x_': _K + (0!_- u1_)
as_ B_

The major displacement integral.

The largest part of x = x' + x" is that

The integration of (A.23) yields the

r sin_ n_2
0, L ' J_l -

+ Bcos_

28 [tan-_

(_ _ B_)_
tan(_p/2) }]:_ •

Case II :

! !

X2 - XI -----

_ _ C_2

a E sin@ ]:: _

+ Bcos_

2B [tanh-1 {( 82- a_) _

(__ _)_ _ +
(®/tan 2 _

Case III:

l J

X2 - XI =

Case IV:

I !

X - X

(A.29)

(A.30)

(A.31)

(A.32)
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iii) The minor displacement integral.

The integration of (A.2_) for x" leads to

somewhat more complex results. The first case is given here

so that it may be "viewed with horror." This part of the dis-

placement is always small and may be approximated quite easily.

Case I: as > B2

ul a - ci 8
X" - X" =

[log tan(_/4 + q0/2)]_

4(_ - B_)
[ sinto ]_ +

+ Bcos_

_(a_-_ _)_
[taxl_1{( c_2 - 8m)_ t2 ) ]qo2 •tan( 0/2 _i

(A.33)

Case II: B2>_2, is similar to (A.33) except that the last

term is modified in the same way as (A.30) and (A.26).

The values of x_ - x_ may be approximated easily from

the relation

I I

x_ - x_ _ (x_- x_)(G/c) (A.34)

mI

where u and c are mean values for the layer concerned.

-- " " is a small correctionSince u/c is a small fraction, x 2 - x I
t

to x_ - x_ •

iv) Short cuts

It has already been mentioned that the in-

tegration of the "minor displacement" due to the wind speed term

of (A.17) may be estimated approximately by the expression (A.34)

as a fraction of the "major displacement."
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The major displacement itself may be estimated from (A.21)

directly by assuming that the speed of sound is constant in the

layer concerned. Thus

[ {, , _ 2¢ tan_1 (==_8=)_2 tan(m/2) _PI" =2>8=
x_ - x_ - (___)_ta _ + _ ' '

(A.35)

x_' - xl' _ 20 [tanh-1 Sa-cta) _ "' '_ Be > c_a
(_2_=2)v, _ = + _ tan(m/2l]jm ' '

(A.36)

Q32

_=8_0, (A.37)

_D2

x_ - x_'_- (c/a) cot(_/2 ,
ml

_=-S/O. (A.38)

For practical purposes, the value of _ may be taken at the

mid-point of the layer concerned. For a more accurate result
a

the value of c may be estimated by equating the results of

(A.35),---,(A.38) to those of (A.29),---,(A.32). The result-

ing value of c is given by

= o_ + =(_.= - _,_)[(2sin_+ sinm_)/6sin_ij.

It is readily seen that the parenthetical factor is 1/2 when

•i and _e are nearly the same. This factor reduces to 1/3

for a minimum value when _2 = 0 .

v) The transverse displacement.

The standard methods of ray tracing handle

the situation as though the ray paths lay in planes through

the sound source. Such is only an approximation, as pointed

out by Milne(28_d Emden (27). The third of the ray path

equations may be integrated approximately to estimate the

transverse displacement. From
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dy/dt-- v

one may assume that v is a constant in the layer concerned

so that the displacement is approximately given by

- tl) ,

or

I

I
I
I

Y2 - Yl = _ x_, - xl ,

where _ is the mean transverse component in the layer and

is the mean speed of sound in the layer, t2 - t_ is the

time of traverse from (A.25),---,(A.28) or, more simply,

x2 - xl is the displacement from (A.29), ---, (A.32) or (A.35),

---, (A.39). The degree of approximation included is such that

it makes little difference whether the major displacement or

the total displacement is used.

I
I

I
l

I

vi) The focusing factor.

It was seen in the preceding section that

the intensity might be expressed in terms of the intensity due

to spherical spreading times a "focusing factor," where

f = r/(dr/d@0)tan @ ,
0

with r = source to receiver distance and ¢o = initial inclina-

tion angle of the ray. The inclination angle of the ray in

terms of the phase normal is given by

tan¢ = c sin_/(c cos_ + u)

I ,

I
I

I

so for the initial conditions

tan@o : co sir_o/(c0cos_o + uo) •

The focusing factor requires that dr/d@o be computed

by some method. This may be done by computing r = r(_o) for

several values of ¢o and performing a numerical differentiation

of the results. It may also be simply computed (at least

|



• +

-88-

approximately) as a part of the computation of r(_ o ).

First, express dr/d@ o in terms of dr/d_o using

dr/d@o = (dr/d_ o )(d_o/d_ o )

so that

I

I

dr dr [ _m__ld@-_ = d_o tango d@o tar_o J "

The parenthetical factor may be evaluated as follows

(tan_o/tar_)(d@o/d_o) _ I + (uo/c o)sir_otar_po .

The second term in this final expression is exceedingly small

since not only u_/co is small but, usually, sir_o, tar_o are

also small. Consequently, the focusing factor may be effectively

expressed as

f = r/(dr/d_o )tar_o .

I The ray path equation

i dx/dt - c cos_ + u

may be differentiated with respect to _o to give

i d(dx/d_o )/dt : - c sin_(d_/d_o )

film

I

I

and from Snell 's Law

d(dx/d_o )/dt : - cosine/cos a_o) •

As before,

d(dx/cko o )/d_ : _d(dx/d$o )/dt_(dt/d_ )

so that

d(dxleo)l_= (OoSi_olcos_o)[Oos_l(_+_oos_)]

where we are concerned with a layer in which a = constant,

= constant.
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This expression integrates at once to give, B _ 0

•2 r_2

2a _[tan-Z {(a2- _2 )_

or, _ = O,

= (cosinmo/aCOS2qOo) (sin_2 - sinai) ,

in the first instance. The four cases, a2>B _, B2>a 2, a + B _g O,

a = -B { 0 are to be considered. The second relation forms

only a special subcase of the first case.

Though this expression seems formidable, all the evalua-

tions would have been performed in the computation of x2' - x1'

(even in the abbreviated form) so that the computational effort

consists only of forming the required sums over the layers in

a somewhat different way. Consequently, the computational

effort is somewhat less in computing the focusing factor along

a ray at the time of ray computation than to compute several

rays and to determine dr/d@0 by differentiation of the results.

l
I

_i̧5

i
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PHYSICAL ASSUMPTIONS BEHIND THE RAY TRACING METHOD

i. Formulation in General Terms

The basic assumptions behind the ray tracing method are

dependent on two major steps in the derivation of the physical

equations. The first step consists of linearizing the equations

of motion. This requires that the perturbations of the medium

be small (i.e., that the intensity of the sound be not too

great). The second step requires that the frequency of the

sound be high; in fact, the limit at infinite frequency is the

sound field that is referred to as that of the ray or geometri-

cal acoustics (Ingard(241. _ It is sometimes stated that the

variation of the properties of the air over a distance of one

wavelength be small. The first restriction on the amplitude

of the sound is generally satisfied if the mean acoustic veloc-

ity amplitude, U e is small compared with the wave velocity, c .

The second approximation actually requires more than is stated

in that also the variations must take place "smoothly." This

restriction is effectively that

klv_cl<<IvCl

where v c is the gradient of

(Morse and Ingard(33! p. 80).

wind component. )

c and v_c is its Laplacian.

(The same also holds for the

2. Formulation in Terms of a Ducting Problem

The above statements of the basic assumptions require some

amplification to be meaningful. The specific form of the second

assumption for some very similar refraction problems is given

by Brekhovskikh(1)for an underwater sound channel consisting

of a layer of uniform speed of sound of depth H below which

the speed of sound has a positive gradient (increases with depth).

The situation is almost exactly analogous to the case of a

layer of air with constant temperature capped by an inversion.



I

I
l
I

I

!
I
!

!
!
!

!

I
!

I
!

I

-91-

In this instance the relation required is that

The situation is illustrated in Figure Iio It is readily seen

that for the higher frequencies the assumption is readily

fulfilled for most atmospheric cases, but that for frequencies

of a few cycles per second, it is seldom (if ever) satisfied.

Another form of the assumptions is the statement that

the initial ray inclination angle must not be too small:

i/s

_o>> /_(do/dz)/2_l .

This formulation of the assumption is illustrated in Figure 12.

3. Formulation in Terms of Ray Tube Cross Section

The assumptions behind the ray tracing method are discussed

at some length by Kerrt_4_or'-" the case of short radio waves.

Though the waves are not sound waves, the mathematical arguments

and assumptions are analogous in considerable detail when appro-

priate changes in the quantities concerned are made. The two

conditions are that

and

where

(_12_n)(Ivnln I)<<I ,

(xl2_n)(IvJ/Jl)<<I ,

= wavelength

n = index of refraction = Co/(C+U)

u = wind speed

J = B(x,y,z)IB(_,_,_); _=f_(x,y,_.),

_=f_ (x,y,z),

{=f, (x,y,z),
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(x,y,z) are the space coordinates and (_,_,C) are coordinates

such that _,_ determine the ray (from the intersection of the

surfaces _ = const, _ = const) while _ corresponds to a sur-

face normal to the rays, a wave front. In somewhat different

terms,

J = dA/n(d_d_)

where dA = element of area on a wave front cut by the ray

tube determined by the parameters _,_ + d_,_,_ + d_ . Thus,

along a ray tube, J is proportional to the ross-section of

the ray tube.

The first inequality simply states that the change in

index of refraction in a wavelength must be small compared with

unity. The second condition states that the relative change

in cross section of a ray tube in a wavelength must also be

small compared with unity. Unfortunately, the second criterion

is not applicable a priori. It does, however, indicate already

that the situation cannot be assessed by the path of a single

ray and that the ray has meaning only when associated with the

family of rays to which it belongs (Kerr(34! p. 54). This is

particularly important in the case of a "focus," where the ray

method gives a ridiculous answer for sound intensity and, conse-

quently, other methods must be used for the intensity esitmate.

4. Formulation in Terms of Longest Wavelength Ducted

The return of sound waves to the earth is analogous to the

problem of the ducting of short radio waves. One may use the

analysis of Kerrt_*_or the longest wavelength trapped in a

duct to give a criterion for the applicability of the ray trac-

ing method in the atmosphere:

Xma x = (_/3)2 [n(z)-n(d) dZ
0

where d is the height of the duct. The index of refraction may

be represented as
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where uo is wind speed at z : 0 and a = dC/dz, B=du/dz,

which are assumed constant. Performing the integration approxi-

mately, it follows that

which may be written in the form

_3

ksd : [ maxCO/(16_/_/9)(a+8)]

which corresponds to the strong inequality from Brekhovskikh

quoted previously. Some minor changes are to be noted:

Brekhovskikh Above

i (i) d

>> (2) ----

k (3) Xmax

4 _ : 12.6 (4)

dc/dz (5)

16_/9 % 6.34

dc/dz + du/dz

The important differences lie in items (2)_ where strong in-

equality is replaced by approximate equality, (3), where the

interpretation of the wavelength is correspondingly different,

and (4), where the numberical factors are somewhat different.

The expression for kma x may be expressed differently

if we let _c = (a + B)-d = change (including wind) over the

distance d. Then

Xma x =. 2.5d(A_/co)

The equation is graphed in Figure 13.

Item (I) is essentially notation while item (5) is

essentially the same in both cases. (Wind was included above
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since it is a part of the acoustic problem.)

One may interpret the Brekhovskikh strong inequality as

the approximate equality above provided that the wavelength is

decreased by a factor of approximately 0.71. Stated differently,

given the ordinate (H or d) and abscissa (dc/dz or _+B) in

Figure 13, the wavelength indicated is one which, from

Brekhovskikh's inequality, should be much larger than that

required to satisfy the ray method assumptions; while from the

approximate quality abov% 0.71 times the wavelength indicated

is the maximum wavelength ducted.

In this connection, Kerr_34_t_ page 21, seems pertinent;

"---radiation at several times these wavelengths may also be

affected strongly by the duct."
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DISCONTINUOUS CHARACTER OF dr/d_o IN THE "LINEAR LAYER" MODEL

The calculation procedures for the ray tracing method gener'

ally violate the second of the basic assumptions of the ray

tracing technique. These assumptions were, essentially,

that:

a)

b)

Changes in property were small over a wavelength

or k[Vci<<c ; and that

Changes take place smoothly over a wavelength

or _I__ol<<Ivcl

In the "linear layer" model of the atmosphere (in which changes

in speed of sound and wind are linear functions of height with-

in reasonably small layers), gardient changes at the layer

boundaries are discontinuous. The situation is illustrated in

Figure 14, in which the "linear layer" model is indicated by the

solid lines while a "smoothly varying" atmosphere is indicated

by the dashed curves. The value of v_c _ d2c/dz 2 is essentially

zero everywhere except near the layer boundary but has a "hump"

here in the smoothly varying case. As the smooth case approaches

the linear case, the hump becomes larger. Thus, in the "linear

layer" one may think of v_c as zero everywhere except on layer

boundaries where it has an "infinite" discontinuity. Consequently,

the "linear layer" model cannot satisfy the second assumption for

any wavelength.

The failure to satisfy the second assumption shows up

clearly in certain irregularities of the ray tracing results.

We carry through this arithmetical exercise in the following.

Consider a simplified case in which there is no wind* so that

* This assumption is made to simplify the arithmetic. In this

case we need not quibble about the difference between "ray"

inclination, @ , and "phase normal", _ , since they are identical.
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the ray tracing may be represented by the layer formula

n-1

r = 2 _ RI (si_i_ l

1

- sir_i ) + 2Rnsir_n_1

I

!

!

Ri _ (Co/OOS_o)/(do/dz)i : Co/_ico_o,

ci/cos_i = c°/cos_ e •

It is readily seen that

I

I

n-i

dr/d_o=(2cosin_o/COS2_o)[1/W1 sin_ + _ (I/_i+ _ - 1/Si)/sir_i _. (A.40)

I

k
which becomes tangent (horizontal)Consider now the ray, _o ,

l-

to the k'th interface. The value of sir_ is determined by

Sne II 's Law

I c°s_k = Co/Ck

with cos_k = I. The value of r and of dr/d_o from (A.39) and

I (A.40) respectively are nicely defined. The values of sir_k = 0
are never reached since n = k, and the highest value is k-1 at

!

I

the end of summation.

Consider the same ray, but as entering the layer above

the k'th interface. The position of return from (A.39) works

very nicely since the last term of the summation

I (Rk+ I - Rk) sir_ k

is zero. The intensity relation, (A.40), is not valid since

the term

I

I
I

(I/Sk+ I - 1/_ k)/sir_ k

is included and is undefined°

If we look at the situation from the point of view of

angles _° slightly greater than $oK, the situation is a
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little better understood. In this case the last terms of the

sums to find r and dr/d_ogiven by (A._I) and (A.42) are valid

since sin_k/ 0 . However, as _o _ _k (from above) the final

summation term in (A._I) becomes zero while that of (A._2)

becomes large, its sign depending on the relative values of

_k+1, _k as shown below and in Figure 15;

0 < _ < dr/d_o _ cO_k+i '

0 < Rk+_<_k, dr/d_o _ + oO

(the value of _k must be positive in order to have a ray

tangent at the k'th interface.)

In the third case

_k+1 < 0 < _k ' dr/d£Oo _ - cO

there is not only a discontinuity in dr/d_o since the ray,

_ , is bent upward on the k'th interface and continues

until the level is reached where again (if ever)

c _ co/cos_ok ,

In such a case several more (positive) terms are added to the

summation (A.39).

A part of the situation is easily seen by looking into

how the angle, _k ' is affected by Snell's Law as a function

of _ . For those angles such that _o>_ , say

_o = _ + ¢ , one has

[ _(_ok +-_ - COSsin_ k 1 ( Ok/C ° ) 2

from which

sin_ k _ (Ck/C ° )(sin2_ok) :/2

Thus, for ¢ _ 0 , then sin_ k " 0 , but d(sin_k)/d_ k _ + cO

i.e., the derivative of sin_ k has a discontinuity at _o= _

:vertical tangent)
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The properties of the function r = r(oo) (radial

distance of the returning ray as a function of the initial

inclination angle) which have been discussed are characteris-

tic of the "linear layer" approximation to atmospheric condi-

tions and are not unique to the particular example related

above. This selection was made only on the basis of its

relatively simple arithmetic to illustrate the point involved.

This point is that for all angles _'o such that the ray

becomes tangent to an horizontal interface between layers

with constant gradient of wind and speed of sound, the basic

assumption of "smooth" variation of the atmospheric parameters

is violated for any wavelength and, consequently, the sound

intensity calculated at these points (zero in the limit) cannot

be considered as correct.

The question of what to do about this situation is

difficult. There appear to be two alternatives. The first,

to use a "smooth" variation of parameters c and u before

integrating the equations for the ray, introduces great analy-

tical difficulties unless one resorts to a systematic "numerical

integration" of the equations of the ray. This may be done at

the expense of computer time. A second alternative is to

smooth the computed values of r and dr/d_o (or of f) after-

wards. The second answer raises the question of "How?". This

does not appear to be any more difficult than answering the

same question with regard to the first alternative, how to

smooth the atmospheric data to better (?) represent the atmos-

pheric conditions.

Something along these lines is discussed by Anderson, Gocht,

_nd Serota '_3_)though their work would require extensive modifi-

cation for application to the atmospheric problem.
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THE GRADIENT OF THE FOCUSING FACTOR

The focusing factor may be written in the form

f = kr2Jo/J

.I

I

I

I

,_1

I
I

I
I

I
I

I

I

!

where J

Jo =

k =

cross section of the ray tube at distance r

reference cross section of the ray tube

suitable proportionality factor.

It was seen that the second assumption could be expressed as

IVJ/J I << 2_n/X

where ? = gradient operator. Considering distances

along the ground

(i/f)(df/dr) = 2/r - (I/J)(dJ/dr)

so we must have

I21r -(llf) (dfldr)l << 2_nl_.

Since we are interested in reasonably large distances such

that r>>l we may neglect the term 2/r on the left so that

(11f)(dfldr)<<2_I_ •

Consequently, the second assumption implies a reason-

ably smooth field of the focusing factor; the percentage

change of focusing factor in a distance of a wavelength should

be small. This kind of statement is somewhat indefinite_ but

if we take it to mean a ratio of 10 -2 , or less, and wish to

include wavelengths up to I00 m (3 cycles), we should have an

upper boundary as 6% per i00 m. In somewhat another form

Id(lO'iog f)Idr I << 3/_
io

so that the intensity change should not exceed 0.03 db per

hundred meters.
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INTENSITY AT A FOCUS

The focusing factor was expressed

f = --..Tr/Cdr/d1_o)tango

r = radial distance from source to receiver

$o = inclination angle of the ray (here assumed the

same at both source and receiver). At those points, or those

angles _o , at which dr/d_o = 0 , the focusing factor

becomes infinitely large. The resulting intensity

I = l.f

where I. = intensity for spherical spreading, becomes infinite

at these locations. This result is more dramatic than factual

and is brought about by the failure of the second basic

assumption of the ray methods; i.e., at such points the rela-

tive rate of change of ray tube area per wavelength is no

longer negligible. The analysls to determine the focusing

factor must be redone to account for interference effects. It

may be shown that (Brekhovskikh (I), page 483ff) the appropriate

expression for the focusing factor becomes

f = (1.25/tango)[2vrsin_o/k(d2r/d_o 2)]½ .

Wave interference which takes place at the focus gives

rise to interference zones. The distance from the focus to

the first zero is referred to as the "width" of the first

maximum of intensity and is given by the expression

Ar- 1.86 [_2(d2r/d$_)/(lsin$o)2] ½ .
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NOTES ON "ROUNDED MAXIMA"

It has been mentioned that the "linear layer" model of

the atmosphere, though convenient, violates at least the

second assumption behind the ray tracing method, that of the

"smoothness" of the changes of speed of sound and wind as a

function of coordinate.

In the following, some ray tracing relations are derived

in some instances in which speed of sound changes smoothly in

the vertical. The situation is most critical when the speed

of sound has a maximum or secondary maximum. In such a case

the vertical gradient of the speed of sound changes abruptly

from positive to negative with the possibility of rather

large changes. To simplify the arithmetic, the wind is

ignored. This permits treating wave normals as ray tangents

and eliminates the correction term for downwind ray displace-

ment due to wind.

When a maximum or secondary maximum with a "corner", as

in the linear layer model, occurs in the speed of sound vs

height curve, the ray return to the ground shows a break or a

shadow zone. When the corner at the maximum is rounded to

have a zero gardient at the maximum value, the ray tracing

picture is altered materially. The break in the function

r = r(@o) is eliminated. There remains, however, a discon-

tinuity in the sense that for _o_@i , r-_cO. This means that

the shadow zone has been eliminated and the whole space becomes

ensonified (however lightly).

I. Parabolic Maximum Instead of a Corner

Let the values of the speed of sound at two levels be

ci and c2 and let the heights be O, H. The usual linear model

is
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This may be replaced by a parametric linear-quadratic model of

the form

C = Cl + C_Z ,

c = %- y(H-z) 2,

0 < Z < h_

h <z -<H,

with the formulaLion of a , ¥ depending on the parameter h.

To obtain a match at z = h of c and dc/dz,

H
D

l
H

!
!

!
!

H
'E

Ci + Cub = c2 - y(H-h) a

whence

= 2_(H-h),

C£ = 2(c=- c,)/(i+h),

y = (o= - c,)/(H_-h _) .

The final expressions are

c : c_+2[(c_-c,_.)/(H+h)]z,

c = c_ -[_c_-c,)/(_-h_)](_-z) _,

O< z <h ,

h_z <H .

The above provides a way of subdividing a layer to obtain

a parabolic maximum. The curvature of the maximum is a function

of h . For h = 0 , the fit is quadratic; for h = H , the

fit is linear, as shown in Figure 16-

The practical applications, a judicious choice of the

parameter h is necessary. Through "rounding" the maximum, its

use might increase the difficulties of the discontinuous

derivative dc/dz at the junction with lower levels. The slope

at the bottom level of the layer is 2(c2-cl)/(H+h) which

may be made to vary from (c2- c l)/H to (c2- ci)/2H . If the

slope of the speed of sound curve for the linear layer model

in the layer below lies in this range, a value of I may be

chosen so that dc/dz is the same in both layers at the

Junction. If the slope in the layer below exceeds the larger

value, the choice of h=0 at least minimizes the slope discontinu-

ity at the junction within the limits of this analysis (i.e.,

remaining confined to modifying this layer only). When the
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slope of the layer below is less than the lower limit, then

any choice of h < H increases the slope discontinuity; the

least change at the juncture being for h = H . In this last

case, the "best" choice produces an entirely linear layer

again which is exactly what should be avoided. Some value of

h near H seems reasonable but a criterion for selection is

missing.

!
I

I

I
i

i
I

i

i
i

I
i
I

2. Refraction Earthward in a Parabolic Layer

Consider the layer with a maximum speed of sound at the

top and let the interpolation form be quadratic

c = c_ - y(H z)_-- ._ = (c_ - cl)/H_ •

Consider the case of downward refraction of rays within the

layer. The distance traveled from entry to attaining a

horizontal tangent is given by

Z _

x = J'cot_dz ,
0

O<z* <H.

The inclination as a function of z depends on Snell's Law

costa= (c/c_)COSm_

where c is given above and _i is the inclination at z = 0 .

Then

sing_= [c_-c_cos2qol+2ycs(H-z)2cos2$1-yS(H-z)4cos2q01] 7ci .

The inclination will be horizontal for _ = 0 so that the top

of the integration will be determined by

c_2- c_cos 2cpI = "2yca(H-z*)2cos2cPI+ Ya(H-z*)4cos2q0_

Then

sin_= (cos_Ic_)(2yc_)x

{(z*-,.)(2_-_.*-z)[_-(y/_

I
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To simplify the integration, the factor in brackets is

approximated as I.

The displacement then becomes

X = _Z* CB - 7 (H-z)S dz .

o (2yc_)_[(z_-z)(2H-z_-z)_

or

(2yc_)_,_x= (o, - y_/4)A - y_B - y_C ,

where

C_ = 2(H - z*)

and, for y = z* - z ,

Z _

0 0 0

The final result is

X _--"

2c,-(_ -c, )( I-z*/H)_

In the above, it is readily seen that the principal part is

contained in

x = H_2cs/(cm-cl )_I_ sinh-1 [z*/2 (_-z*)]½ .

Considering z* as a ray parameter, those rays that penetrate

only a small distance, z*<<H, travel on correspondingly short

distance in the horizontal during the process. Those rays for

which z* * H, i.e., penetrate nearly the top of the layer,

travel an extremely large horizontal distance; in fact, for z*

* H, then x * _.
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Digression on the Linear Layer for Comparison

In the case of a linear layer for which

c = c_ + a z, a = (c2 - c_)/H ,

then

x__i_c.z_/_c_-c.)_

It is readily seen from the above that for z* = 0 then x = 0;

while z* = H implies that

x--_ H [2cm/(c2 - ci)] _.

Consequently, all rays returned in this layer are displaced

(on return to the bottom of the layer) a finite range, depend-

ing on their depth of penetration (or on their angle of

inclination at entry through the bottom).

In comparing the linear layer model and the parabolic model,

note that common values of z* in each instance do not indicate

corresponding rays (angles $i). They correspond at z* = 0,

_I = 0 and at z* = H, cos$i = _/c2, but the depth of pene-

tration is greater (same values of $_) in the case of the linear

model for intermediate values of _.

3. Penetration of a Parabolic Layer

The method of integration used in the examples is confined

to the case of a ray reaching its maximum height within the

layer concerned. For the rays that penetrate the layer, the

displacement integral is

H {02 - y(H-z) 2} cos_

X =/ dzo [c_-{c.-_-z_}.coo._.?
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X

./2

(_ +_ co_ )_
{[% (l-co_)]_+

(c.+c,oo_, , (c.c.)oo_?}
[(C__Cz)COS_l _ tanh [ c± (1-cosqol)

where ci < c < c2 is an approximate average which was used to

simplify the integration.

For logical consistency to trace the rays penetrating a

layer topped by a rounded maximum of speed of sound, it should

be paired with a layer above with similarly rounded "maximum"

at the bottom.

In this instance

c = ci - y_, y = (c_ - 02)/_,

and the displacement integral is

H

x_/
[c_0

(c_ - y_)co_

- (ci-y_ )2cos2_l

Integration yields

X _

i

H(Cl -c2 )2

?[(c_-c_co_.)+2[c_ +_ cos_1

(l+co_1)

(ci-c2)(co_)½ tanh-l{(cl-c2:::__ .
C - C 2

In this instance we are allowed _i * 0 and, from the second

term (the principal term) it is seen that the displacement

becomes infinite for _ . O.

I
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Sound Ray Tracing in an Atmosphere with "Parabolic" Layers

I. The Atmosphere Model and the Ray Model

The ray model for tracing sound rays in the atmosphere

may be expressed by the ray (differential) equation:

dx c cos_ + u

dz c sir_

and by Sne!!'s Law:

C C O

+Uo = K
cos_ + u cOS_o

The above differential equation (A.43) expresses the fact that

the ray inclination (tan -l (dx/dz)) is not the same as the

phase normal, _, since the sound energy is transported horizon-

tally by the wind component, u. It is assumed that the

propagation is in the plane that contains the wind component.

The effect of the wind component perpendicular to this plane

is easily taken into consideration. Snell's Law (A.44) also

contains the wind component, and along a "ray", the relation is

constant as indicated by the initial values with subscript on

the right-hand side.

The ray tracing procedure consists of solving (A.44) for

cos_, substituting into (A.43), and integrating the resulting

expression where the wind component, u, and speed of sound, c,

are considered as functions of height, z. The result of

eliminating the angle of the phase normal is the expression:

d__xx=
dz

c_OO_o+u[Oo+(_u)CO_o]

u ]_ Ecco_°]_}_c{Eoo+(u.)co.oo
c 2 + u(K-u)

o[(_-u)o-°9

(A.45)
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where use has been made of the right part of (A.44) above.

The radical in the denominator of (A.45) may be factored

so that the expression becomes:

dx

_/( )]i- K- u+c

dz

I

I

I
I
I
I

where

The numerator expression, F, is a function of altitude,

but does not undergo large changes. Its magnitude is in the

neighborhood of wF_/_--, neglecting small effects of u, u<<c,

and considering c and c0/cos_o as being of the same order of

magnitude. The denominator of (A.46) is important since for

any ray, _o' which returns to the earth it becomes zero at

some level, the level for which _ = 0, the crest or maximum

altitude of the ray. The behavior of the integrated form of

(A.46)

I x- _ = f{F(z)/[K-(u+c)]_}dz

I

I

I
I

i.e., the ray displacement in the horizontal direction, is

strongly affected by the behavior of the denominator near

this level.

In view of the above, the integration of (A.48) may be

approximated using the mean value theorem in the form

Z

x - x o = F (C)[ [K-(u+c)] _ dz

Zo

where C is a suitable value in the range zo< C < z. It is

assumed that the layer zo, z is not extremely large (usual

practice in ray tracing methods).

(A.46)



!

i

i ii

l

I
I

I
!
I

I
I

!

I
I

I
I

-109-

The distinction between the many ray tracing techniques

involve the way in which the radical in (A.45) is handled. In

the form (A.45, the variation of c and u with z must be

treated separately. For each represented by a linear variation

throughout a layer, the integration is elementary (Rothwell_30_.'"

If parabolic variation in a layer is considered, the integration

leads to the well known Elliptic Integrals but not in a simple

way. (The square root of a rather general quartic is involved

and the integration required detailed classification of its

roots.) Even in this case, the other terms of the integrand

are being ignored and must be accounted for. When the integrand

is expressed as in (A.48), the use of a parabolic variation

of u+c=v with altitude is convenient and the distinction

between the variation of u and c separately with altitude is

no longer necessary as far as denominator is concerned. The

mixture of u and c in F(z) may be handled in a variety of ways

without leading to undue complications. The methods of

carrying out the integration will be discussed subsequently.

2. The Atmospheric Model

The usual model of the atmospheric is a "linear layer"

model by which is meant that in layers the sum c+u is assumed

to be a linear function of height, represented by a sequence

of points joined by straight lines. It has been pointed out

that such a model does not satisfy the basic physical assumptions,

particularly in that the second derivative with respect to

height has infinite discontinuities at the layer boundaries.

If the linear layer model is abandoned, the question of

what is a reasonable substitute is not readily answered. To

some extent, the answer depends on how the atmospheric sounding

to determine c and u is made.
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The usual routine sounding for synoptic purposes is

recorded in such a way that c is determined from temperature

(virtual) information which is selected at "significant"

levels. These levels are significant because, among other

things, they represent the boundaries of layers through which

the temperature varies linearly with height. Some of these

points may be selected because they represent the occurrence

of local mov_ ..... _ - o -..........a ...... nlm_ mn the sounding. In such a case, a

local "rounding" at these points may be appropriate with the

local maximum or minimum retained at the point itself.

Soundings made in such a way that data is recorded at

specified time intervals or altitude intervals must be

considered from a different point of view. In this case, the

occurrence of a true local maximum or minimum at the data

point would be quite accidental, the normal occurrence being

between the data points. Consequently, Joining the data points

by straight lines in such regions may be unappropriate.

a) Parabolic Layer Model

The parabolic layer model considered here is

appropriate for representation of a sounding in which data is

taken at prescribed intervals of time or altitude. It is by

no means a unique representation, but has some inherent

advantages. Among others, it has the advantage of being a

"smoothest" representation that is thoroughly consistent with

the data. The ground rules for constructing such a representa-

tion are:

a) The function v = u+c = v(z) must fit the data

points exactly.

b) The slope dv/dz at the data points is assigned

on the basis of the adjacent data points.

c) The parabolic arcs must join with a common tangent.

d) When a choice exists, it is made so that the

discontinuity of the second derivative at join

points is least.
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The above is formalized in the following. Consider the

quantity v = u+c : v(z) as specified at data points zi_ I ,
to To

zi • zi+ I , etc., and consider the layer zi zi+ I -

reduce the subscript algebra let v I = v(z i) , v_ = v(zi+l) ,

A = z -z and let k be a parameter that is 0 at zi and I
i+l i '

at zi+ I so that z = zi+(zi+ l_i )k = zi+Ak" Consider the

layer zi, zi+ I as divided into two parts. In the lower part,

let the function be represented by the parabola

Yl = al +b_ Ak+cl A_ k2

and in the upper part of the parabola

Y2 = a_+b_ Ak+c2A2k_

The function values and derivatives are prescribed at ½(0) =

v(zi) and v2(1) = v(zi+ I) from which

v,(o): v, --a,

' =D_Av_(o)= v_

v_ (I) = v2 -- a_+b_A+c2 A_

'(1): v_ : b_a+2o_A_V2

where v' = dv/dk (not dv/dz). It then follows that

aI = v_

a2 = v_-v_+c_ a_

b_A = v'-2c_ A22
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Since the two expressions for the upper and lower parts of

the layers must join with a common tangent, the conditions are

and

ClA_-c_A _(l-k)_ : v_- vl - v_'(l-k)-vl'k

clA2k + c2A 2 (l-k) = (v_ '-v-, ')/2

from which it follows that

oiA_k = v_-v_ -v_ '(1-k)/2 - v1' (l+k)/2

c_A_(l-k) = v!-v2+v_'(l-k)2 +v1'(k/2)

so that c, and c2 depend on the location of the Join point k,

0 < k < i. The difference in second derivatives at the Join

point is measured by the difference, c2-ci, and

-.I

A_(c2-cq) = [k(l-k)] [(vl-v2)+(v2'+v1')/2]

It is readily seen that this difference, cz-cl, is a minimum at

k -- _, the midpoint of the layer, where the first factor on the

right has the value 4.

If the parabola in each half layer is in the form

v = A+Bt+Ct 2, 0 < t < i, the coefficients are given by the

following. In the layer zn < z < (Zn+l+Zn)/2

A:v n

B = Vn'Czn+ 1 -Zn)/2

v' v' )/_]/2C--[(Vn+ 1 -Vn) - ( n+l + 3 n)(Zn+l-Z n

and in the layer (Zn+l+Zn)/2 < z < Zn+ I
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V w -- •
A : [ (vn + Vn+ I) - ( n+l Vn)(Zn+l Zn)/4]/2

B = (Vn+ 1 - Vn) - (v' ')( - z )/4n+l + Vn Zn+l n

-- V: -C : -[ (Vn+ 1 vn) - (3 n+l + Vn)(Zn+l Zn)/4]/2

where now v_ 'Vn+ I are derivatives with respect to z, dv/dz,

at the indicated data points. The assignment of these derivatives

is quite arbitrary. The standard Lagrange formula is available

f'(x_)= (a-fo)/(xl-Xo)+(f_-a)/(_- xi)-(f_-fo)/(_-Xo)

or the secant approximation

f'(xl): (f_-fo)/(_-xo)

or any other handy (and reasonable) form may be used.

3. Integration of the Ray Equation

The ray path integral is

z_

x_ -xi = _F.z._.K-v.2. dz

zi

where

K = co/cos $o + Uo

i

F(z) = [c _ + u(k-u)J/o[K + c-u] _

v = V + c.

(
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The integration is approximated in the form

= F(_) /X2--X 1

Z!

Z 2
_1

(K-v)_ d_

where _< [ < z2. For a parabolic layer model, the expression

for v(z) is considered in the form

v : A + Q (z - z.p

All integrals are elementary.

cases required are tabulated.

I.

The results for the several

II.

Q > O, K - A > O, P = [(K - A)/Q] _

a : Z. < Z_ < Z 2

ZI = (Z I - Z.)/P,

-i

x2-xl = F(_) Q2

b:

z_= (z_-z.)/P

(sin -_ Z_ -sin -_ Z_)

Z 1 < Z 2 _ Z.

: (z.-zl)/P,_ : (z.-_)/P

x_- xI = F (_) (sin -_ Z_ - sin -I Z2)

Q < O, K-A > O, P = [- (K- A)/Q] _

a: z. _ z I < Z_

Z_ = (zI - z.)/P,

b:

z_ = (z_ - z.)/P

_-x_ = F (c)(-Q)_ log{[z_+ (_+z_)_j/[z_+(1+ z_)-_]}

Z 1 < Z_. _ Z.

z_ = (z.-_._)/P, z_ =

-_ = F(c)(-Q)

(z.-z2 )/P
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i

lIT: Q < 0, K - A < 0, P = [ (K - A)/Q] _

I
a : z. < z1 < z 2

I _ = (_-z.)/P, z_= (%-z.)/P

I

I

I
I
I

I
I
I

I

I
I
I

I
I

_-x_ = F(C)(-Q)-_ log{[Z_+(Z_-l)_]/[Z_+(Z_-Z)_]}

b _ Z 1 < Zm <- Z.

m_= (z.-z_)/P, z_ = (z.-z_)/P

x_-x_ : F(C)(-Q)-_log{[% + (z_-l)-_]/[z_+(Z_-l)_] }

In the above, the maximum or minimum of v(z) occurs at z.

and z. is excluded from the interval _, z2 . In the event

zI < z. < z2, a subdivision to place z. at an end point may be

made and one of the above forms may be used.

The linear cases with

v = A+B(z-za )

are handled in the expressions

IV: a: B > 0, K-A > O, z. = z_ + (K-A)/B, _ < z2 _ z.

P = (K-A)/B, Q = (z2-z I )/P

i i

xe-xl + 2F(C)(P/B)_[I - (l-Q) _]

b: B < 0, K - A > O,

P = -(K-A)/B, Q - (z_-zl)/P

x2-xl = 2F(C)(-P/B)_[ (I+Q) -_ -I]
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c: B=0, K> A

1

_-x_ = F(c)(z_-z_)/(K-AV

The determination of F(C ) can be accomplished only by an

appeal to some sort of estimate of its basic variation with

respect to altitude within the layer. If a linear variation

is assumed, the integration is equivalent to that of

Z2

x_-x_= / [F_ + (F_-F,)(_-z_)/(z_-_)](K-v)@ dz

Z1

with the results

I: a: F(C) = F_+[(F_-F_)/(Z_-% )]{[(1-z_# -(1-z_)½]/

(sin -z Z2 -sin -I ZI)-ZI}

b:

I!: a: F({)

F(C)= F_ + [(F_-F,)/(Z_-Z_)]{[(1-Z_)_-(1-Z_)_]/

(sin -I ZI -sin -z Z_)-Za}

(l+Z_)½J/log= F_+[ (F_-F_)/(_-Z_ )]{[ (l+Z_)-_

{[ _ +(l+Z_#]/[ z_+(l+7_)_]}-z_}

I

I
I
I

III: a:

b: F({) = F_+[(F_-F_)/Z_-Z_)] .

F(C) = F_+[ (F_-F_)/(Z_-Z_ )].

{<(_-_#-(z_-_)_/_o_{E_÷(z_-_)_/Ez_+(_ -_#_}-z_}
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F(_) : F_+E(F_-F_)/(Z_-Z_)].

b:

c: F(_): (F_+F_)/2

where appropriate meaning for the symbols is listed in the

previous tabulation of the several cases. For those cases

for which x2- _ remains finite, it appears that for small layers

the value (F2+FI)/2 is a reasonably good approximation. A

better value would be obtained using the above. The situation

would be still more exact if higher order approximations to

F(z) are used. This is a feasible procedure since the integrals

involved are all elementary (but the calculations required

become even more tedious than above).
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4. Summary

The ray tracing method involves the evaluation of an

improper integral (integrand becomes large without bound) in

every instance in which a ray returns to earth• The integrand

may be expressed in a form which isolates this particular

factor of the denominator which becomes zero• The remaining

terms may be lumped together in the numerator of the integrand.

The numerator then b_om_s a slow I_T varying function of height

The assumptions about the variation of v = u + c with altitude

in the atmosphere strongly affect the results of the ray

tracing method. The linear layer assumption (points of v(z)

joined by straight lines) has little virtue in that it may

well fail to represent the atmosphere well, expecially if

data are recorded at arbitrary times during ascent or heights

(without reference to v(z) itself)• In such cases, a repre-

sentation in terms of parabolic layers may be expected to

describe the situation better. In addition, the formulation

in terms of parabolic layers fits the physical assumptions

behind the ray tracing method far better than the "linear

layer" assumption (to which there are some significant

objections). The formulation in the above terms permits

evaluation of the integrals in elementary terms to a reasonably

high degree of accuracy.

I
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APPENDIX B

THEORETICAL TREATMENT OF VARIABILITY OF SOUND INTENSITY ESTIMATES

I
I

I

I
I

I
I
I

I
I

I

I
I
I

The application of information on the variability of wind,

temperature, and vapor pressure (or relative humidity) to the

problem of estimating sound intensity involves three distinct

and different problems. First, knowing all about the atmosphere,

it is necessary to be able to calculate the sound intensity.

There is no clearly defined way to do this with a well-defined

degree of accuracy. In the limit of high frequencies (or

short wavelength), the ray tracing method provides some informa-

tion, but the results must not be pushed too far because the

method may be made to produce silly answers. On the other hand,

this is all that is available in the present state of the art.

The second problem involves that of describing the state

of the atmosphere. The most common description (which is

adequate for many purposes) is that of the linear layer model.

This model has the advantage that it permits the use of

abbreviated methods in the construction of ray paths, but

the very use of such a model and computing method violates the

basic assumptions of ray acoustics. At least some of this

difficulty may be ironed out by "rounding" some of the "corners"

in the linear layer model. This process brings one back

immediately to the exact description of this "rounding"

process in terms of the real atmosphere. An adequately exact

measurement of the radius of curvature of the "corners" would

require fantastically complex meteorological observations.

The description of the variability of the atmosphere in

time and space and its application to an ideally accurate sound

intensity estimation procedure constitutes the third major

problem. One approach, using a point-wise perturbation
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technique of the simplified linear layer model, is feasible

but of doubtful accuracy in view of the limitations placed on

the range of allowable parametric variation.

This method is discussed at some length in the following

section. The somewhat more general approach to the perturbation

of the ray differential equations does not appear to have a

tractable solution.
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I. Effect on the Focusing Factor

The errors in sound intensity estimates using the ray

tracing method that are due to the way in which meteorological

parameters affect the pattern of the returning rays may be

discussed in terms of the focusing factor. From the basic

relations

I = I.f, f = r/Idr/d@o Itan¢o , (B.1)

it is seen at once that I. is not subject to error from this

source since it is the intensity that would have been present

due to sperical spreading. The numerator of the expression for

f (r, the distance from source to receiver) is also unaffected.

One is concerned with the variations that may occur in the

denominator terms, Idr/d$ol and tan¢o , at a particular

receiver point; i.e., at a fixed value of r and not in terms

of the initial inclination angle, ¢o- Put in different words,

one is not at all concerned with the variations that may occur

in the ray paths due to meteorological changes, but is concerned

with the intensity of sound that arrives at a fixed point

regardless of the path taken by the sound ray in reading it.

Consider the source-receiver distance in terms of the

initial inclination angle, ¢0. Let the meteorological conditions

be represented by the symbol a , where a is a many-component

vector (or a continuous function in a more general sense). For

a given set of conditions, a , there is an initial inclination

angle, ¢o , required that the ray reach the receiver. If the

meteorological conditions are changed to a + da and if the

sound still may be traced to the receiver, it will come from

an initial inclination angle ¢0 + d¢o • The disturbed condi-

tions may be expressed as a series expansion in terms of da

and d@0 ,
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r(_o+d4o , a+da)= r(_o, a) + (_r/5_o)d4o + (_r/_a)da +---.

Since the rays arrive at the same place, one has, to terms of

first order,

($r/_¢o + (_r/_a)da = 0 . (B.2)

as

The relative error in the focusing factor may be expressed

6f/f = - 6[Br/B$o]/(Br/B4 o) - sec2¢o(54o)/tan4o . (B.3)

Since 4o is considered as the independent variable,

and we have from (B.1) and (B.3)

6f/f = - [($2r/$4_)/(3r/_4o)]6@o - [($ar/3¢oSa)/(br/_4o)]6a -

(sec _ 4o/tan4o )6 4o •

Using (B.2) in the above

6f/f = [(5_r/34_)/(Sr/_4o) 2 + sec2@o/($r/_4o)tan4o](Sr/_a)6a -

[ (b2r/3$o3a)/(3r/_ 4o )]6a.

Since 5r/_4o = r/f tan4o ,

6f/f = (f.tan4o/r)[{(32r/_4_)(f.tan@o/r) + sec24o}(Sr/ba) -

_Sr/_4osa]6a •

I
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Use of (B.4) to estimate the error of the focusing factor

requires that one must estimate f, @a, _2r/_@_, _r/_a, and

$_r/_o_a (r being given). The quantity, _r/_a, is one which

one might think was unnecessary to estimate, the change of

the distance of ray return with respect to meteorological

parameter. This has crept in through the back door, so to

speak. Though we could care less about which ray returns at

the given distance, r, we need to know this derivative to

estimate by how much the meteorological parameter change has

changed the initial ray inclination angle.

The expression (B.4) for the relative change of the

focusing factor is in the form of a sum of terms if the

meteorological parameter, a, is representative of several

items; al, --- .

If we let

A = (82r/8@_)(f tan@o/r) + sec2@o ,

then

8f/f-- (f tan_o/r)[{A(Br/Bal ) - 32r/B_oBal}6al + ---

+{A(_r/_an) -_r/_o_an}6a n •

or

6f/f = (f tan@o/r)[A{C3r/_al)6al +---+ (_r/_an)6an}

-{(_2r/_¢o_al)Sak + --- + (_rl_lo_an)_an} ]

which may be written as

6f/f = (f tan_o/r)[A(SF) - (6G)] ,

I
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6F = (_r/_al)6al +---+ (Br/_an)Sa n ,

6G = (_r/_o_al)6al +---+ (_2r/_@o_an)6a n .

(B.6)

2. Estimates on the Basis of an Elementary Model

To obtain a preliminary estimate of the effect of the

change in meteorological parameter, 6a, on the focusing factor,

estimates of the quantities _r/_a and _2r/_o_a must be obtained.

These may be approximated using the "circular arc" approximation

in a simplified form. Then

I/Ri :_ (_icos_o+ Bi)/_o,

and

x i - xi_ I = Ri(sin¢ i - sin@i_l ) •

Consider a perturbation of the meteorological parameters

ck and u k at the k'th level. Then

c_ = ck + Ac ,

_k = uk + Au ,

where c_ , u_k are the perturbed values and Ac, Au, represent

the amount of the perturbation. The parameters at the other

levels are considered as unchanged. Then consider the ray

path made up of the sum of terms in x i - xi_ 1 .

a i and _i are given by

_i = (el " ci-l)/(zl- zi-1),

_i = (ul - ui-1)/(zi- zi-1) ,

The values of
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so that changes of parameter at the k'th level change the

values of R over the k'th and (k + l)'th intervals and change

the value of _ . All other values in the sum remain unchanged.

For a ray that reaches higher into the atmosphere than the

(k + l)'th level, the total horizontal distance traveled is given

by

n

I r = 2 _ (x i - Xi_l)

I
I

I
I
I

I
!

I

1

in the unpertrubed condition and is given by

r_ = r + 2(X_+ I - X k+l)

in the perturbed condition. In other words, the total

perturbation of distance to the return point is due to the

distance perturbation that takes place between levels k-1

and k+l and is accounted for at the (k+l)'th level.

The analysis will be carried through with the approximation

that u m o so that only speed of sound changes need be considered.

The wind is approximately accounted for by addition to the speed

of sound. In this instance, _ = ¢ so that the quibble concerning

ray tangents and phase normals is avoided.

Using the first order approximation

x_+ I - Xk+ I = (8Xk+i/SCk)aC k •

Then since

Xk+ I - Xk_ I = Rk(Sir_k - sir_Pk_l ) = Rk+l(sir_Pk+l-sir_k) ,

it follows that
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_xk+i/_o_: (_Rk/_ck](si_- sit.k_I)
+ _Rk+l/_ ck) (sin_k+l -

sin_) + (Rk - Rk+l)°°_k(_/_°k)

since
are independent of ck •

_k-I and qOk+ I

corn@o/co (Zk+l - zk) •
= + _k+l_Rk+l/D ck

Then

From Snell's Law one obtains

_$k/SCk = - cosse/cosin_ k •

Then

Xk+l/_ ck = -
(co_o/Oo)[R_(si_k- si_k-_)/(zk- zk-l)-

_k+1(sir_k+l- si_k)/(zk+l - zk) +

(R k - Rk÷ l)c°_pk/sir_k] •

Since

zk - Zk_ 1 =

Zk+ 1 - zk =

- R k (c°s_k - cos_k_l),

-Rk+ I (c°s_k+l - cosq0k) ,

we have
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sin_k - sln_k_l
_ _ Rk+ I

cos_k- cos_k_l

slr_Pk+ I - sir_k

cos_k+l - cos_k

(R k - Rk+ I) cos_Jsin_ k]

Now

(sina - sin_)/(cosa - cos_) = - cot[ (a + B)/2]

so that

_xk+i/_c_= (OO_o/Oo)[Rk{oot[(_k+ _k_l)/2]- oo_ -

Rk+_{c°tE(_k÷_+_k_/21-°°_k}]"

From the relation

cota - cot6 = - sin(a-8)/slna sin8 ,

it follows that

8Xk+i/SCk -

cos_po

co sir_pk

Rk

sin[ ($k-_k-1)/2]

sin[ ($k_k_l)/2]

+ Rk+ I

sin[ (_k+l-_k)/2] _

sin[(_k+l+_k)/2]

The approximations

_Ok+l-_Ok _ 2%ok , _ok + qOk_ I _ 2qok ,

and

I
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sln(_2) -_ (sir_k)/2 •

are used to obtain

_Xk+i/_c k _ _ cos_o(Xk+ I - Xk_l)/2cosln2_k ,

so that

r/8 ck cos_o (xk+ I - Xk_l)/Co sin2$ k •
(B.7)

If the term 82r/85osa is treated in the same manner,

then one starts with

_r/_$_ = 2tango[--- + Rk(i/sinsk - I/Si_k-l) +

Rk+l(1/slr_k+l- 1/sit, ok) +---] ,

so that

B_8_o_c k = - 2tar_o [ (aRk/SO k) (1/sln_ k - I/sir_k_l) +

(_Rk+l/_Ck)(I/si_k+l- 1/si_k) -

(Rk+ 1 - Rk)(8$_SCk)/sln_$k] •

When this is compared with the first expression for _Xk+i/Bc k ,

it is obvious that if we make the same approximations, one

will eventually end up with

_r/_c k _ (tar_o/sin2$k) (Sr/_c k) •

We are now in position to estimate the long parenthetical

(B.8)
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expressions of (Bo6) on the basis of (B.7) and (B.8)

6F _ - (cos¢o/Cosin_@o)[(sin@o/sinCz)2 (x__xo)(Scz + 8tk) + ---

+ (sin¢o/sin¢h_2)2 (Xn_ I -Xn_3)(SCn_ 2 + 8Un_2)] ,

6G _ - (1/cosin@oCOS@ o )[ f°_'_" I_'_"' )4 (6 ) +_-.'-,,_"o,' .... _- (x_ -_ ) ci + 6_ ---

)" (6%_2+ 6 )] ,+ (sin¢o/sin@n_2 (Xn_i-Xn_3) Un_2

where the values of Ac are now replaced by the part due to the

error in speed of sound and wind separately.

It is seen that the error contribution at each level is

proportional to the distance traveled in the layers adjacent

and is weighted by a factor which is proportional to the

inverse square of the sine of the ray inclination in one case

and the inverse fourth power in the other. Consequently, the

errors at the higher levels are much more strongly weighted

than those of the lower levels.

If, in the above, we write

(Zk+ I - Zk_l)/(Xk+ I - Xk_l) _ tan¢k _ sin¢k

and if Zk+ 1 - Zk_ I = 2&z where &z = height interval between

levels, then

n-2

6F- - [2(Az)cos¢o/cosin3¢o]

k=l

n-2

6G = - [2Az)/sln 3 ¢o Co cos¢o ]

k=l

(sinCQ/sln$k)s(Sc k + 8u k) ,

(sln¢o/sln¢k)5 (6c k + 8u k) •
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The summation terminates at n-2 since the values at n-I

must remain as given by Shell's Law. The case for n-l, the

level at the bottom of the layer in which the ray reaches its

maximum, and that for n, the top of this layer, requires

separate treatment. The same is true for the bottom, n = o.

a) Simplified Example

The calculation of the coefficients for 6F and

8G is dependent on the particular situation with respect to

which the variation is computed. In a particularly simple

case of a linear variation from the surface upward, the relative

error of the focusing factor may be expressed approximately as

n-2

6 f/f _ [ 1/2c o (n-p)sin Sg0] E

k=l

[ (n-p)/(n-p-k)] (_ck + 6uk)

where n = the number of layers involved in the ray traced.

If H is the maximum height of the ray and Az the height

interval between measurements of c and u , then H/(Az) = n-p,

where 0 < p _ I ; i.e., p is the measure in units of Az by

which the height H fails to reach the height of the top or

n'th layer. The coefficients of the sum are given below for

the particular case of n = i0, p = 0.5

n-p-k]

I I.32 5 6.89

2 I, 82 6 12.2

3 2.55 7 28.3

_ 3.49 8 lO1.

The last value for p = O.1 and 0.9 would be 62.1 and 208.,

respectively. It is readily seen that the parameter value

errors near the maximum height of the ray far outweigh the

values at the lower levels.
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b) Restraints on the Variation of Parameters

In the estimate of the change of r and _r/_¢o

due to the variation of the atmospheric parameters, there are

some limits to the variation which should be kept in mind.

These come under two categories.

I. The variations should be small enough that

none of the assumptions of the ray method are violated in the

perturbed sounding. (In a technical sense, this is impossible

since the linear layer model violates these assumptions anyway.

In another sense, the variations should be small since the

method is basically a first order "differential method.")

2. What variations occur should not change the

basic character of the curve of c + u as a function of

altitude. (Since u = wcose, w = wind speed, e = azimuth,

one might insist that this statement hold for any azimuth.)

The second point requires some explanation. By the

preservation "character" of the curve, it is intended that

the original and perturbed curves should exhibit maxima and

minima at the same levels and that little secondary extremes

are not introduced by the perturbations. This criterion may

be expressed as

16Ckl < smaller of {ICk+l - Ckl , ICk - Ck_ll}

with a similar expression for the wind component. It is

evident that the allowable variation of 6c k is dependent on

the thickness of the layers into which the atmosphere is

divided since

I Ck+l - Ckl = lal (zk+ 1 - zk) •

c) The Top Two Levels

The contribution of the top two levels, n and
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n-l, to the error in the focusing factor require a modification

of the previous treatment. It was previously assumed, in

treating a perturbation at level k , that the ray entering

at level k-i made its exit at level k+l. The ray is assumed

to bend earthward in the layer between levels n-I and n so

that the conditions are not fulfilled.

In the case of the top level, n , the perturbation affects

only the radius of curvature in this layer which changes the

distance traveled and height of the maximum. Let

I
Xn* = - Rnsin_n-I- Xn_ I

I
I

I

be the distance traveled in the (n-l, n) layer. We designate

by (x_ , z_) the coordinates of the maximum (rather than using

unmodified symbols since these have been associated with the

level heights; Zn_ I < z* < z ) The methodology is the samen n "

as before with the result that

I
I

I

I

-R n z* - z I _

E n n-l]$x_/5c n _ (RnCOS_o/Co) zn - Zn_ I zn - Zn_

The constraints on 6c n are stronger than before, since

it must be assumed that the ray still returns earthward. There

is a c* such that Cn_ I < c* < c for which it is requiredn n n
that

m C_ _
n Cn-I < 6Cn "

In the case of the n-I level, the result is nearly the

same as before

_X n /_On_ 1 _- (cos_o/cosin2$n_l){(Xn - Xn_2)/2 +

[(_ - Xn_l)/2][l - 4(z n - Zn)/(z n - Zn_l)]}
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with similar restraint on 6Cn_ 1 to assure that the ray concerned

returns earthward in the level between Zn_ I and zn .
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3. Variation Approach to the Meteorological Errors

It was seen in the previous section that at least a part

of the variation of the focusing factor requires an estimate

of the variation of the landing distance of a ray with respect

to the variation of the meteorological parameter. To estimate

this variation, the ray equations

dx/dt _- c co_p + u

dz/dt = c sin_

and Shell's Law

c/cos_ + u = co cos_o + u o

are subject to variation;

d(6x)/dt = co_(6c) - o si_(_) + (6u) ,

d(6z)/dt : sir_0(6c) + c cos_(8_)

sec_0(6c) + c sir_psec2_0(6_o) + (6u) = 0 .

so that

6_ = - (co_/c si_)(sc + 5u co_) ;

d(Sx)/dt = 2 cos_(6c) + (1 + cos2_)(Su) ,

d(6z)/dt: (-1/si_)[eos2_(6c)- cos3_(Su)]

The variation 6x , 8z are obtained by integrating along the

ray path

t

_ =f [_co_c>+ <_+co_>_u>]_t,
O

t

8z = -/(1/sir_)Ecos2_(Sc) + cosS@(Su)]dt •

0
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The first integral may be approximated quite easily by

the expression
t

6x = 2/ (6c + 6u)dt

O

since in general the angle _ is small.

The second integral involves sir_0 in the denominator so

that the integral becomes large near _ = 0 , or the crest of

the ray. It is easily verified that the integral cannot be

evaluated by the usual methods.

It would appear that the knowledge of 6x , which was

estimated easily, would be sufficient to estimate the variation

of the landing point of the ray. This is not the case since

the variation of the "range" is composed of two parts

8r = 8x + (6z)cot@o

as shown in Fig. 17.

The variation of coordinates 8x , 5z transfers a point

on the ray from the point P (original point of ray return)

to the point B on the new ray. The point B may well not

be the new location of ray return and, consequently, the new

ray must be extended to the new return point pt.

This is connected with the fact that the limits of

integration are over the time to traverse the ray originally

so that x + 6x , z + 6z is the point reached on the perturbed

ray in the same time of travel that it took on the original

ray to reach the ground. The perturbed return point is obtained

by extending the perturbed ray to the ground along a straight

line parallel to the original ray.

The situation is "doubly" bad since not only is the value

8z given by an improper integral, but, in addition, the

factor cot@o is large, since the ray inclination angles are

small.
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Height as Independent Variable

The basic ray equation

dx/dz = (c cos_ + u)/c sir_

c/cos_ + u = co/cos_o + uo

may be used to illustrate the problems in a direct approach to

the estimate of errors by a perturbation method.

To start, note that the factor sir_ in the denominator

of the expression for dx/dz is zero at the top of the ray

(the ray is horizontal). The upper limit of integration is

determined by this condition from Snell's Law:

c(z*)+ u(z*)= Co/COS_o+ _.

The integration may be performed, since, though improper, the

integral converges at this upper limit. This is easily seen

if u _ 0 , uo = 0 , in which case (for the linear layer

model) one may write

so that

co_ = I - (_/c*)(z*- z)

I , )½

(the situation is not changed if u _ 0 ,

more tedious.)

but the algebra is

To estimate the perturbation in x from perturbations of

and u , the method of the preceding section leads to

d(Sx)/dz = [(c COS_ + u)/c2sinS_(6u) +

[(c(l+sln2_) + u cos_}/c2sin3_(Sc) .

,
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In the integrated form

Z _

0

(6z*)

where the last term is the part due to the change in the upper

limit of integration, 5z , due to the changed atmosphere.

This looks very fine, except that the last term is undefined,

since _ = 0 at the upper limit.

The expression _r/_o appearing in the focusing factor

is much more important in estimating the perturbation or errors

of sound intensity. If one sets up the differential equation

for this quantity, then

d(Sx/5_o)/dz = - (CoSir_o/COS2_)[(c + u cos_)cos2_/c2sinS_] .

This cannot be integrated using the linear layer model since

at the upper limit the integral is improper like (z* - z) -3# .

The difficulties in using differential methods to estimate

5x and the improper expression for the integral of _x/_o

are closely connected with the fact that the linear layer model

of the atmosphere violates the second fundamental assumption

of the ray method - smoothness.
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I
APPENDIX C

I
CONSTRUCTION OF RANDOM NUMBERS HAVING GIVEN SECOND ORDER

RELATIONS

I. Linear Transformation Method

Let ul, i = I, ---, n, be an ensemble of sequences of

correlated random numbers such that 7 = _ and u_u_ =
a_jr_ are known. It is required to construct a particular

i realization or a set of realizations that have the required
second order properties. Let the quantities ul/_ _ be

represented in terms of a linear transformation of some

other set of numbers, xl, i = I, ---, n,

V_ = Ul/_i = _ a i: x_ ,

I J=l

i= i, --- , n

I where v_ has unit standard deviation and v_ v_ = r_ _.

of the x i 's,

In terms

n n

V, V l = ri_ =__ a_; a_q(xT_q) .

p=l q=l

It is convenient to take _x_ = I if p = q and = 0 if

p _ q. Such a set of numbers will be of unit variance

(standard deviation equal to I), independent, and are easily

constructed. With these restrictions on the numbers x_, the

above reduces to

I

n

ri _ = _ al p

p=l

aj_ i, J = I, ---, n
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which is to be solved for the n e coefficients ai_

of the n(n+l)/2 values of r i_ (r i_ = r_i).

The last equation may be written in matrix form as

R = AA l

in terms

where R = {r_}, A = {a!_ } and A' = transpose of A. The

matrix R is symmetric and nonsingular so that it has an (upper

triangular) square root matrix S, S = [s_], s1_ = 0 if

i > j, with the property

R = SiS

where S' is the transpose of S.

transpose of S

We simply identify A with the

A= S t

so that A is simply the lower triangular square root of R.

The algorithm for finding the elements of S (or of A) is

straightforeward and easily carried out.

This simple method of computing A has not been noted in

the literature. The usual procedure is to find the proper

values and vectors of R by solving the matrix equation

RM= MD

where M is the matrix whose columns are the proper vectors

of R (unit vectors since MM _ = I) and D is the diagonal matrix

of the proper values of R (D = [di_}, di_ = 0 if i _ J,

the diagonal elements d_i, are the proper values). Since R is

symmetric and positive definite, then the proper values are

all positive so that

R = XDM'= (xD½)(_)' .
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Consequently, the value of A is obtained from

1

A=MI_

1

where D_ is the diagonal matrix with diagonal elements _/dll.

The method for finding proper values and vectors involves

much more computation than that of finding the triangular

square root. All proper values and vectors are required, not

just a few corresponding to the largest proper values.

It is not legitimate to equate the two values of A

obtained by these methods. The first expression for A is a

lower triangular matrix. The second expression for A does

not necessarily have this property. The initial problem is

undetermined and does not have a unique solution. A solution

depends on the nature of the additional restrictions that are

imposed.

There are trade-offs between the two methods for some

purposes. The frequency function of ul/_ i has not been

mentioned, nor has that of the independent numbers, xl, with

unit variance. If the values of x_ are normally distributed,

then either method results in values of v I = u_/o_ that are

normally distributed and properly correlated. If the values

of x i are not normally distributed, then the distribution

of the vi = ul/o i depends strongly on the method of construct-

ing the matrix A.

In the first instance, in long form,

vi = ul/_ = silxi ,

v_ = u_/% = si2xi + s22x 2 ,

v: = _/% = SinXi + S_nX _ + --- + SnnX_,

.
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I

I
I
I

so that _ = _q_ has the same distribution function as _;

v2 = u_/_ will have a distributive depending on those of both

and x2 ; etc. In the second instance, each of the values

of vi = u_/ql depend linearly on all n values of x_ . In

this case, if n is appreciable, then the distribution of v i

will be nearly normal (n > 8 is sufficient in many cases to

bring about a nearly normal situation) regardless of the

distribution of the x1's. (For example, if xl is chosen as

+I, O, -I, at random, then for reasonably large n the u_'s

will be nearly normally distributed.) (See Law of Large

Numbers in any standard text on probability.)

Fortunately, we are satisfied if the u_'s are normally

distributed (or nearly so). If another specific distribution

is required, the problem becomes very difficult

2. Method of Averages

The initial requirements for the method of averages are

similar to those of Section 1 preceding. The linear averaging

relation is given by

k

I v:u/oE ax+
I

I
I

I
I

I
I

J=l

i = l, ---, n .

In this case, there are only k coefficients to be determined

and each of the v,'s are determined using these same coefficients

regardless of the value of i. There are n + k values of the

independent random numbers x_ to be provided in each instance.

(This compares with the n2 coefficients in the matrix A of

the linear transformation method.)

The covariance of vi

rlj) is constructed from

and v, (or correlation coefficient

k k

rIj = vlv_ = E E apaq

p=l q=l

(x_+_x_+5).
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since the x_'s are to be independent with unit variance,

then x;+Ix¢+ : = 0 if p+i _ q+J and = 1 if p+i = q+J.

This requires that say p = q + J - i whence

k

r I_ = _ aq+3_i •

q=l

A restriction is placed on the method because on the left

the indices i, J appear only in the form J - i. Consequently,

r_ must be a function of only the difference in its indices,

j - i. If the indices refer to height levels or time (or time

lags), the spacing must be such that this condition on correlations

is satisfied. This may be approximately the case when height

or time spacings are equal. (It is certainly not true for

equal spacings covering the large range of altitudes).

An additional convention is observed in the above summation:

when the index q+J-i is less than 1 or more than k, the value

zero is assigned to aq+___ .

The method is sometimes formulated in symmetric form

k

J=-k

with 2k+l coefficient. The expressions differ primarily in

the matter of indexing. Since there are an odd number of

coefficients in the expression above, the case corresponds

to an odd number of coefficients in the assymetric form.

Returning to the assymmetrical case, the equations to be

solved, in any form, are (using rj_ I = r_i = r_)

1 = ro = a_ + a_ + --- + _ ,



i

!

i

rl = al ae + ae a3 + --- + ak -i ak ,

re = ala_ + aea_ + --- + ak_eak ,

rk-1 = alak •

!

I
I

I
I

A second restriction is now placed on the method For

fixed k , the scheme can fit only k-I given correlation

coefficient. The remaining coefficient is used to "normalize"

the solution in accordance with the first of the above

relations.

It is now a question of solving the k simultaneous

quadratic equations. A real solution is desired since all of

the values of vl are to be real. This imposes additional

restrictions on the permissible values of rl , i = 0 ,

--- , k - I .

! Other methods, such as autoregressive schemes like

v_ = aj v, _j

i j=l

where the

+b x i

x_ are independent random variates may also be used.

ii
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